已知函數(shù)f(x)=
3x-2

(1)判斷該函數(shù)在區(qū)間(2,+∞)上的單調(diào)性,并給出證明;
(2)求該函數(shù)在區(qū)間[3,6]上的最大值和最小值.
分析:(1)利用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性.(2)利用函數(shù)的單調(diào)性求函數(shù)的最值.
解答:解:(1)任設(shè)兩個(gè)變量2<x1<x2,則f(x1)-f(x2)=
3
x1-2
-
3
x2-2
=
3(x2-x1)
(x1-2)(x2-2)
,
因?yàn)?<x1<x2,所以x2-x1>0,(x1-2)(x2-2)>0,所以f(x1)-f(x2)>0,f(x1)>f(x2).
所以函數(shù)f(x)=
3
x-2
在區(qū)間(2,+∞)上的單調(diào)遞減,是減函數(shù).
(2)因?yàn)楹瘮?shù)f(x)=
3
x-2
在區(qū)間[3,6]上的單調(diào)遞減,所以函數(shù)的最大值為f(3)=3.
最小值為f(6)=
3
4
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的判斷以及利用單調(diào)性求函數(shù)的最值問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
,若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的圖象過點(diǎn)(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)該函數(shù)的圖象可由函數(shù)y=
2
sin4x(x∈R)
的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|3-
1x
|,x∈(0,+∞)

(1)寫出f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,b(0<a<b)使函數(shù)y=f(x)定義域值域均為[a,b],若存在,求出a,b的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x-
π
3
)=sinx,則f(π)
等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案