已知點P的極坐標為(2,
π
3
)
,則點P的直角坐標為( 。
分析:利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,可求出點的直角坐標.
解答:解:x=ρcosθ=2×cos
π
3
=1,
y=ρsinθ=2×sin
π
3
=
3

∴將極坐標(2,
π
3
)化為直角坐標是(1,
3
).
故選A.
點評:本題主要考查了點的極坐標和直角坐標的互化,同時考查了三角函數(shù)求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P的極坐標為(1,π),那么過點P且垂直于極軸的直線的極坐標方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•許昌縣一模)以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點P的極坐標為(
2
π
4
),直線l過點P,且傾斜角為
3
,方程
x2
36
+
y2
16
=1所對應的曲線經(jīng)過伸縮變換
x′=
1
3
x
y′=
1
2
y
后的圖形為曲線C.
(Ⅰ)求直線l的參數(shù)方程和曲線C的直角坐標系方程.
(Ⅱ)直線l與曲線C相交于兩點A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P的極坐標為(2,
π2
)
,曲線C的極坐標方程為ρ=-4cosθ,過點P的直線l交曲線C與M、N兩點,求|PM|+|PN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P的極坐標為(1,π),那么過點P且垂直于極軸的直線的極坐標方程為(  )

A.ρ=1

B.ρ=cosθ

C.ρ=-

D.ρ=

查看答案和解析>>

同步練習冊答案