已知函數(shù)f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013
,設函數(shù)F(x)=f(x+3)•g(x-4),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z內(nèi),則b-a的最小值為( 。
A.8B.9C.10D.11
∵f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013

∴f′(x)=(1-x)+(x2-x3)+…+x2012
=(1-x)(1+x2+x4+…+x2010)+x2012
當x=-1時,f′(x)=2×1006+1=2013>0,
當x≠-1時,f′(x)=(1-x)(1+x2+x4+…+x2010)+x2012
=(1-x)•
1-(x2)1006
1-x2
+x2012
=
1+x2013
1+x
>0,
∴f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
在R上單調(diào)遞增;
又f(0)=1,
f(-1)=-
1
2
-
1
3
-
1
4
-…-
1
2013
<0,
∴f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
在(-1,0)上有唯一零點,
由-1<x+3<0得:-4<x<-3,
∴f(x+3)在(-4,-3)上有唯一零點.
∵g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013

∴g′(x)=(-1+x)+(-x2+x3)+…-x2012
=-[(1-x)+(x2-x3)+…+x2012]
=-f′(x)<0,
∴g(x)在R上單調(diào)遞減;
又g(1)=(
1
2
-
1
3
)+(
1
4
-
1
5
)+…+(
1
2012
-
1
2013
)>0,
g(2)=-1+(
22
2
-
23
3
)+(
24
4
-
25
5
)+…+(
22012
2012
-
22013
2013
),
∵n≥2時,
2n
n
-
2n+1
n+1
=
2n(1-n)
n(n+1)
<0,
∴g(2)<0.
∴g(x)在(1,2)上有唯一零點,
由1<x-4<2得:5<x<6,
∴g(x-4)在(5,6)上有唯一零點.
∵函數(shù)F(x)=f(x+3)•g(x-4),
∴F(x)的零點即為f(x+3)和g(x-4)的零點.
∴F(x)的零點區(qū)間為(-4,-3)∪(5,6).
又b,a∈Z,
∴(b-a)min=6-(-4)=10.
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習冊答案