【題目】如圖所示,在直角坐標系中,點到拋物線的準線的距離為.上的定點,,上的兩動點,且線段的中點在直線.

1)求曲線的方程及點的坐標;

2)記,求弦長(用表示);并求的最大值.

【答案】1..2,的最大值為1.

【解析】

1)根據(jù)拋物線的定義,求出,即可得出拋物線的方程,便得出點的坐標;

2)由點,得出,利用點差法求出直線的斜率,得出直線的方程為,直線方程與拋物線方程聯(lián)立,寫出韋達定理,利用弦長公式求出弦長,通過基本不等式求得的最大值.

解:(1的準線為

,∴,

∴拋物線的方程為.

又點在曲線上,∴.

.

2)由(1)知,點,

從而,即點

依題意,直線的斜率存在,且不為0,

設直線的斜率為,且,

,得,

所以直線的方程為,

.

,消去

整理得,

所以,.

從而

.

當且僅當,即時,上式等號成立,

滿足.

的最大值為1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》亮點頗多,十場比賽每場都有一首特別設計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.因為前四場播出后反響很好,所以節(jié)目組決定《將進酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進酒》與《望岳》相鄰,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有( )

A. 144種 B. 48種 C. 36種 D. 72種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,分別為棱的中點.為面對角線上任一點,則下列說法正確的是(

A.平面內(nèi)存在直線與平行

B.平面截正方體所得截面面積為

C.直線所成角可能為60°

D.直線所成角可能為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線是由兩個定點和點的距離之積等于的所有點組成的,對于曲線,有下列四個結(jié)論:①曲線是軸對稱圖形;②曲線上所有的點都在單位圓內(nèi);③曲線是中心對稱圖形;④曲線上所有點的縱坐標.其中,所有正確結(jié)論的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,已知是以的直角三角形鐵皮,米,分別是邊上不與端點重合的動點,且.現(xiàn)將鐵皮沿折起至的位置,使得平面平面,連接,如圖所示.現(xiàn)要制作一個四棱錐的封閉容器,其中鐵皮和直角梯形鐵皮分別是這個封閉容器的一個側(cè)面和底面,其他三個側(cè)面用相同材料的鐵皮無縫焊接密封而成(假設制作過程中不浪費材料,且鐵皮厚度忽略不計).

1)若邊的中點,求制作三個新增側(cè)面的鐵皮面積是多少平方米?

2)求這個封閉容器的最大體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】德國著名數(shù)學家狄利克雷(Dirichlet,1805~1859)在數(shù)學領域成就顯著.19世紀,狄利克雷定義了一個“奇怪的函數(shù)” 其中R為實數(shù)集,Q為有理數(shù)集.則關于函數(shù)有如下四個命題,正確的為( )

A.函數(shù)是偶函數(shù)

B.,,恒成立

C.任取一個不為零的有理數(shù)T,對任意的恒成立

D.不存在三個點,,,使得為等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項公式;

(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于AB兩點.

⑴求拋物線C的方程,并求其準線方程;

為坐標原點.,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地某所高中 2019 年的高考考生人數(shù)是 2016 年高考考生人數(shù)的 1.5 倍,為了更好地對比該?忌纳龑W情況,統(tǒng)計了該校 2016 年和 2019年的高考升學情況,得到柱圖:

2016年高考數(shù)據(jù)統(tǒng)計 2019年高考數(shù)據(jù)統(tǒng)計

則下列結(jié)論正確的是(

A.2016年相比,2019年一本達線人數(shù)有所增加

B.2016年相比,2019年二本達線人數(shù)增加了0.5

C.2016年相比,2019年藝體達線人數(shù)相同

D.2016年相比,2019年不上線的人數(shù)有所增加

查看答案和解析>>

同步練習冊答案