13.盒子里有大小一樣的15個(gè)球,其中10個(gè)紅球,5個(gè)白球,甲、乙兩人依次摸一個(gè)球,求甲得紅球,乙得白球的概率.

分析 甲、乙兩人依次摸一個(gè)球,有15×14=210種方法,甲得紅球,乙得白球有10×5=50種方法,即可得出所求概率.

解答 解:甲、乙兩人依次摸一個(gè)球,有15×14=210種方法,甲得紅球,乙得白球有10×5=50種方法,
所以所求概率為$\frac{5}{21}$.

點(diǎn)評(píng) 本題以概率問(wèn)題為載體,主要考查古典概型,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過(guò)圓心O,若PB=OB=1,OD平分∠AOC,交圓O于點(diǎn)D,連接PD交圓O于點(diǎn)E,則PE的長(zhǎng)等于(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{3\sqrt{7}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,H、M是AD、DC的中點(diǎn),BF=$\frac{1}{3}$BC.
(1)用$\overrightarrow{a}$,$\overrightarrow$來(lái)表示$\overrightarrow{AM}$,$\overrightarrow{HF}$;
(2)若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$,求$\overrightarrow{AM}$•$\overrightarrow{HF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知正項(xiàng)遞增的等比數(shù)列{an}中,a1=1,2a3與$\frac{3}{2}$a5的等差中項(xiàng)為2a4,數(shù)列{bn}的前n項(xiàng)和為Sn滿足Sn=$\frac{n_{n}}{2}$,且b2=1.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$+$\frac{1}{{S}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=mx3+3(m-1)x2-m2+1(m>0)的單調(diào)減區(qū)間是(0,4),則m=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=$\frac{({4}^{x}+1)}{({2}^{x}-\frac{4}{3})•{2}^{x}}$-a有且只有一個(gè)零點(diǎn),則a的范圍為( 。
A.a>1B.a>1或a=-3C.0<a<1或a=-3D.a>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若$\frac{1}{tanα-1}$無(wú)意義,則α在[0,π]內(nèi)的值是$\frac{π}{4}$或$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x+$\frac{1}{{e}^{x}}$.
(1)討論函數(shù)f(x)的單調(diào)性,并求其最值;
(2)若對(duì)任意的x∈(0,+∞),有f(x)>ax2-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,陰影部分(包括邊界)為平面區(qū)域D,若點(diǎn)P(x,y)在區(qū)域D內(nèi),則z=x+2y的最小值是-1;x,y滿足的約束條件是$\left\{\begin{array}{l}2x-y+2≥0\\ x≤0\\ y≥0.\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案