若3、a、a3能構(gòu)成一個(gè)集合,你認(rèn)為a應(yīng)怎樣取值?

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
(Ⅱ)證明:當(dāng)a=2,b=
2
時(shí),數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
(Ⅲ)設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},試問(wèn)在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在xoy平面上有一點(diǎn)列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,對(duì)每一個(gè)(n∈N+),點(diǎn)Pn(an,bn)在函數(shù)y=2000(
a10
)
x
(0<a<10)的圖象上,且點(diǎn)Pn(an,bn)與點(diǎn)(n,0)和(n+1,0)構(gòu)成一個(gè)以點(diǎn)Pn(an,bn)為頂點(diǎn)的等腰三角形.
(1)求點(diǎn)Pn(an,bn)的縱坐標(biāo)bn關(guān)于n的表達(dá)式;
(2)若對(duì)每一個(gè)自然數(shù)n,以bn,bn+1,bn+2能構(gòu)成一個(gè)三角形,求a的范圍;
(3)設(shè)Bn=b1•b2•b3•…•bn(n∈N+),若a。2)中確定的范圍內(nèi)的最小整數(shù)時(shí),求{Bn}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:西城區(qū)二模 題型:解答題

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
(Ⅱ)證明:當(dāng)a=2,b=
2
時(shí),數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
(Ⅲ)設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},試問(wèn)在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年北京市清華附中高三統(tǒng)練數(shù)學(xué)試卷6(理科)(解析版) 題型:解答題

在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
(Ⅱ)證明:當(dāng)時(shí),數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
(Ⅲ)設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},試問(wèn)在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案