長方體ABCD-A1B1C1D1中AB=1,AA1=AD=2.點E為AB中點.
(1)求三棱錐A1-ADE的體積;
(2)求證:A1D⊥平面ABC1D1;
(3)求證:BD1∥平面A1DE.
分析:(1)根據(jù)AA1⊥底面ABCD,AA1=2,可知三棱錐A1-ADE的高,然后求出三角形ADE的面積,最后利用錐體的體積公式求出三棱錐A1-ADE的體積即可;
(2)欲證A1D⊥平面ABC1D1,根據(jù)直線與平面垂直的判定定理可知只需證A1D與平面ABC1D1內(nèi)兩相交直線垂直,而根據(jù)條件可知AB⊥A1D,AD1⊥A1D,又AD1∩AB=A,滿足定理所需條件;
(3)欲證BD1∥平面A1DE,根據(jù)直線與平面平行的判定定理可知只需證BD1與平面A1DE內(nèi)一直線平行即可,根據(jù)中位線可知OE∥BD1,又OE?平面A1DE,BD1?平面A1DE,滿足定理所需條件.
解答:解:(1)在長方體ABCD-A1B1C1D1中,
因為AB=1,E為AB的中點,所以,AE=
1
2
,
又因為AD=2,所以S△ADE=
1
2
AD•AE=
1
2
×2×
1
2
=
1
2
,(2分)
又AA1⊥底面ABCD,AA1=2,
所以,三棱錐A1-ADE的體積V=
1
3
   S△ADEAA1=
1
3
 ×
1
2
×2=
1
3
.(4分)
(2)因為AB⊥平面ADD1A1,A1D?平面ADD1A1,
所以AB⊥A1D.(6分)
因為ADD1A1為長方形,所以AD1⊥A1D,(7分)
又AD1∩AB=A,所以A1D⊥平面ABC1D1.(9分)
(3)設(shè)AD1,A1D的交點為O,連接OE,
因為ADD1A1為正方形,所以O(shè)是AD1的中點,(10分)
在△AD1B中,OE為中位線,所以O(shè)E∥BD1,(11分)
又OE?平面A1DE,BD1?平面A1DE,(13分)
所以BD1∥平面A1DE.(14分)
點評:本題主要考查了線面平行、線面垂直的判定定理以及體積的求法.涉及到的知識點比較多,知識性技巧性都很強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在長方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個幾何體的體積為10.
(1)求棱A1A的長;
(2)求點D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,長方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點,N是B1C1中點.
(1)求證:A1、M、C、N四點共面;
(2)求證:BD1⊥MCNA1;
(3)求證:平面A1MNC⊥平面A1BD1;
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個長方體ABCD-A'B'C'D'切割而成,這個長方體的高為b,底面是邊長為a的正方形,其中頂點A1,B1,C1,D1均為原長方體上底面A'B'C'D'各邊的中點.
(1)若多面體面對角線AC,BD交于點O,E為線段AA1的中點,求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當a,b滿足什么條件時AD1⊥DB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點.
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習冊答案