【題目】已知點是拋物線:上一點,且到的焦點的距離為.
(1)若直線與交于,兩點,為坐標原點,證明:;
(2)若是上一動點,點不在直線:上,過作直線垂直于軸且交于點,過作的垂線,垂足為.試判斷與中是否有一個為定值?若是,請指出哪一個為定值,并加以證明;若不是,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】某高中志愿者部有男志愿者6人,女志愿者4人,這些人要參加元旦聯(lián)歡會的服務(wù)工作. 從這些人中隨機抽取4人負責舞臺服務(wù)工作,另外6人負責會場服務(wù)工作.
(Ⅰ)設(shè)為事件:“負責會場服務(wù)工作的志愿者中包含女志愿者但不包含男志愿者”,求事件發(fā)生的概率.
(Ⅱ)設(shè)表示參加舞臺服務(wù)工作的女志愿者人數(shù),求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學家之一,他所著的四元玉鑒卷中“如像招數(shù)”五問有如下問題:“今有官司差夫一千八百六十四人筑堤只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日”其大意為:“官府陸續(xù)派遣人前往修筑堤壩,第一天派出人,從第二天開始,每天派出的人數(shù)比前一天多人,修筑堤壩的每人每天分發(fā)大米升,共發(fā)出大米升,問修筑堤壩多少天”這個問題中,前天一共應(yīng)發(fā)大米____________升.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若函數(shù)有兩個極值點且恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點的個數(shù);
(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點.設(shè),長方形的面積為S平方米.
(1)求關(guān)于的函數(shù)解析式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知都是定義域為的連續(xù)函數(shù).已知:滿足:①當時,恒成立;②都有.滿足:①都有;②當時,.若關(guān)于的不等式對恒成立,則的取值范圍是
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com