分析 (1)利用三角形的面積公式與余弦定理,列出方程組即可求出b、c的值;
(2)由正弦定理和余弦定理分別求出sinB、cosC的值即可.
解答 解:(1)△ABC中,A=120°,
S△ABC=$\frac{1}{2}$bcsinA=$\sqrt{3}$,
∴bc=4,
又a2=b2+c2-2bccosA,
∴b2+c2-2bc×(-$\frac{1}{2}$)=21
∴b2+2bc+c2=25
∴b+c=5,
而c>b
所以b=1,c=4
(2)由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$得:
$\frac{\sqrt{21}}{sin120°}$=$\frac{1}{sinB}$,
所以sinB=$\frac{\sqrt{7}}{14}$;
由余弦定理cosC=$\frac{a2+b2-c2}{2ab}$得:
cosC=$\frac{\sqrt{21}}{7}$,
所以sinB+cosC=$\frac{\sqrt{7}+2\sqrt{21}}{14}$.
點評 本題考查了正弦、余弦定理的綜合應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $2\sqrt{6}$ | C. | $\sqrt{5}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | $\frac{4}{3}$ | C. | $\frac{18}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com