(本小題滿分14分)
(1) 證明:當(dāng)時,不等式成立;
(2) 要使上述不等式成立,能否將條件“”適當(dāng)放寬?若能,請放寬條件并簡述理由;若不能,也請說明理由;
(3)請你根據(jù)⑴、⑵的證明,試寫出一個類似的更為一般的結(jié)論,且給予證明.
(1)證明:見解析;
(2)∵ 對任何且,式子與同號,恒成立,
∴ 上述不等式的條件可放寬為且.
根據(jù)(1)(2)的證明,可推廣為:若且,,,
則有 .
證明:見解析。
【解析】(1)證明易采用作差比較,然后對差值分解因式,再判斷每個因式的符號,從而確定差值符號.
(2)根據(jù)(1)先觀察成立時應(yīng)具體什么條件,然后再采用作差比較法進(jìn)行證明.
(1)證明:左式-右式=,
∵ ,
∴,
∴ 不等式成立.
(2)∵ 對任何且,式子與同號,恒成立,
∴ 上述不等式的條件可放寬為且.
根據(jù)(1)(2)的證明,可推廣為:若且,,,
則有 .
證明:左式-右式
.
若,則由不等式成立;
若,則由不等式成立.
∴ 綜上得: 若 且,,,
則有 成立.
注:(3)中結(jié)論為:若且,,
則有 也對.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com