【題目】已知平面內(nèi)兩點A(4,0),B(0,2)
(1)求過P(2,3)點且與直線AB平行的直線l的方程;
(2)設(shè)O(0,0),求△OAB外接圓方程.
【答案】(1) 直線l的方程x+2y-8=0;(2) △AOB的外接圓的方程為(x-2)2+(y-1)2=5.
【解析】試題分析:(1)求出直線的斜率,利用點斜式求出直線方程;
(2)根據(jù)題意,△AOB是以AB為斜邊的直角三角形,因此外接圓是以AB為直徑的圓.由此算出AB中點C的坐標和AB長度,結(jié)合圓的標準方程形式,即可求出△AOB的外接圓的方程.
試題解析:
(1)由已知得.
由點斜式
∴直線l的方程x+2y-8=0.
(2)OA⊥OB,可得△AOB的外接圓是以AB為直徑的圓
∵AB中點為C(2,1),|AB|=2.∴圓的圓心為C(2,1),半徑為r=.
可得△AOB的外接圓的方程為(x-2)2+(y-1)2=5.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三邊是連續(xù)的三個自然數(shù).
(Ⅰ)求最小邊的取值范圍;
(Ⅱ)是否存在這樣的,使得其最大內(nèi)角是最小內(nèi)角的兩倍?若存在,試求出這個三角形的三邊;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加高一年級期中考試的學(xué)生中抽出名學(xué)生,并統(tǒng)計了她們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為分),數(shù)學(xué)成績分組及各組頻數(shù)如下:
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
合計 |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計成績在分以上(含分)學(xué)生的比例;
(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在的學(xué)生中選兩位同學(xué),共同幫助成績在中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?/span>分,乙同學(xué)的成績?yōu)?/span>分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系 中,過橢圓 右焦點 的直線交橢圓于兩點 , 為 的中點,且 的斜率為 .
(1)求橢圓的標準方程;
(2)設(shè)過點 的直線 (不與坐標軸垂直)與橢圓交于 兩點,問:在 軸上是否存在定點 ,使得 為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某動物園要為剛?cè)雸@的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長度為米,(已有兩面墻的可利用長度足夠大),記.
(1)若,求的周長(結(jié)果精確到0.01米);
(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積,的面積盡可能大,當為何值時,該活動室面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點,△PAB為等腰直角三角形,PA⊥平面ABCD,PA=1.
(1)求證:直線AE∥平面PFC;
(2)求證:PB⊥FC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,動點到兩點的距離之和等于4,設(shè)點的軌跡為曲線,直線過點且與曲線交于兩點.
(Ⅰ)求曲線的方程;
(Ⅱ)的面積是否存在最大值,若存在,求出的面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)家里訂了一份報紙,送報人每天都在早上6 : 207 : 40之間將報紙送達,該同學(xué)需要早上7 : 008 : 00之間出發(fā)上學(xué),則這位同學(xué)在離開家之前能拿到報紙的概率為 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com