(本小題滿分14分)
設直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R,都有. 則稱直線l為曲線S的“上夾線”.
(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.
(Ⅱ)觀察下圖:
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.
解:(Ⅰ)由得, ……………………………1分
當時,,
此時,, ………………2分
,所以是直線與曲線的一個切點; …………………3分
當時,,此時,,…4分
,所以是直線與曲線的一個切點; ……………5分
所以直線l與曲線S相切且至少有兩個切點;
對任意x∈R,,
所以, ……………………………………………………………………6分
因此直線是曲線的“上夾線”.……………………7分
(Ⅱ)推測:的“上夾線”的方程為,……………9分
①先檢驗直線與曲線相切,且至少有兩個切點:
設:,
令,得:(k∈Z),…………………………10分
當時,,
故過曲線上的點(,m()+n)的切線方程為:
y-[ m()+n]=m[x-()]化簡得:.
即直線與曲線相切且有無數(shù)個切點.…………………12分
不妨設,②下面檢驗g(x) ≥ F(x),g(x)-F(x)=,
直線是曲線的“上夾線”.………………………………14分
【解析】略
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com