4.不等式(x-2)(3-x)>0的解集是( 。
A.(-∞,2)B.(3,+∞)C.(2,3)D.(-∞,2)∪(3,+∞)

分析 直接利用二次不等式求解即可.

解答 解:不等式(x-2)(3-x)>0,對應(yīng)的二次方程為:(x-2)(3-x)=0的解為:x=2,x=3,
不等式(x-2)(3-x)>0的解集是:(2,3).
故選:C.

點評 本題考查二次不等式的解法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知等比數(shù)列{an}的首項為a1,公比為q,前n項和為Sn,記數(shù)列{log2an}的前n項和為Tn,若a1∈[$\frac{1}{2016}$,$\frac{1}{1949}$],且$\frac{{S}_{6}}{{S}_{3}}$=9,則當n=11時,Tn有最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=(a2-3a+3)ax是指數(shù)函數(shù),則當x∈[-1,2]時,此函數(shù)的值域是( 。
A.[-2,4]B.[$\frac{1}{2}$,4]C.[-2,0)D.(-2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若loga$\frac{3}{5}$<1,則a的取值范圍是( 。
A.0<a<$\frac{3}{5}$B.a>$\frac{3}{5}$且a≠1C.$\frac{3}{5}$<a<1D.0<a<$\frac{3}{5}$或a>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知向量$\overrightarrow a=({2,-1}),\overrightarrow b=({-1,m}),\overrightarrow c=({1,-2})$,若$({\overrightarrow a+\overrightarrow b})∥\overrightarrow c$,則實數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若a2-a>x+$\frac{4}{x}$+6(x<0)恒成立,則實數(shù)a的取值范圍是(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合A={a|關(guān)于x的方程$\frac{x+a}{{{x^2}-1}}=1$有唯一實數(shù)解,a∈R},用列舉法表示集合A=$\left\{{-1,1,-\frac{5}{4}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若$\frac{1}{a}<\frac{1}<0$,有下面四個不等式:①|(zhì)a|>|b|;②a<b;③a+b<ab,④a3>b3,正確的不等式的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求下列函數(shù)的值域:
①y=sin(3x+$\frac{π}{6}$)(-$\frac{π}{6}≤x≤\frac{π}{6}$);
②y=2sin(2x+$\frac{π}{6}$),x$∈[-\frac{π}{6},\frac{π}{3}]$;
③y=sin($\frac{π}{4}-2x$)($-\frac{π}{4}≤x≤\frac{π}{4}$)

查看答案和解析>>

同步練習冊答案