已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當(dāng)a=-1時(shí),求函數(shù)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;
(2)若y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),求實(shí)數(shù) a的取值范圍.
解:(1)當(dāng)a=-1時(shí),f(x)=x2-2x+2=(x-1)2+1,圖象是拋物線,且開(kāi)口向上,對(duì)稱軸是x=1,
所以,當(dāng)x∈[-5,5]時(shí),f(x)的單調(diào)遞減區(qū)間是[-5,1],單調(diào)遞增區(qū)間是[1,5];
(2)∵f(x)=x2+2ax+2,圖象是拋物線,且開(kāi)口向上,對(duì)稱軸是x=-a;
當(dāng)x∈[-5,5]時(shí),若-a≤-5,即a≥5時(shí),f(x)單調(diào)遞增;若-a≥5,即a≤-5時(shí),f(x)單調(diào)遞減;
所以,f(x)在[-5,5]上是單調(diào)函數(shù)時(shí),a的取值范圍是(-∞,-5]∪[5,+∞).
分析:(1)當(dāng)a=-1時(shí),f(x)的圖象是拋物線,由圖象容易得出x∈[-5,5]時(shí),f(x)的單調(diào)區(qū)間;
(2)f(x)的圖象是拋物線,且開(kāi)口向上,對(duì)稱軸是x=-a,當(dāng)區(qū)間[-5,5]在對(duì)稱軸右側(cè)時(shí)f(x)單調(diào)增,左側(cè)時(shí)f(x)單調(diào)減;
點(diǎn)評(píng):本題利用二次函數(shù)的圖象與性質(zhì)考查了函數(shù)單調(diào)性的判定,是基礎(chǔ)題.