已知數(shù)列{an}滿足:2a1+2a2+…+2an-1+2an=2n+1-2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
2
anan+1
,數(shù)列{bn}的前n項(xiàng)和為Tn.若存在實(shí)數(shù)λ,使得λ≥Tn,試求出實(shí)數(shù)λ的最小值.
(1)當(dāng)n≥2時(shí),∵2a1+2a2+…+2an-1+2an=2n+1-2
2a1+2a2+…+2an-1=2n-2,
2an=(2n+1-2)-(2n-2),即2an=2n
當(dāng)n=1時(shí),2a1=22-2,解得a1=1,也符合上式.
∴數(shù)列{an}的通項(xiàng)公式為an=n;
(2)由(1)可知:bn=
2
anan+1
=
2
n(n+1)
=2(
1
n
-
1
n+1
)
,
∴Tn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)

Tn+1-Tn=2(1-
1
n+2
)-2(1-
1
n+1
)
=
2
(n+1)(n+2)
>0

∴Tn+1>Tn.?dāng)?shù)列{Tn}是單調(diào)遞增數(shù)列,
∴{T1}的最小值為T1=1.
由題意,λ≥數(shù)列{Tn}的最小值=1,
∴實(shí)數(shù)λ的最小值為1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案