cos660°的值為( 。
A、-
1
2
B、-
3
2
C、
1
2
D、
3
2
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:原式中的角度變形后,利用誘導(dǎo)公式及特殊角的三角函數(shù)值計算即可得到結(jié)果.
解答: 解:cos660°=cos(720°-60°)=cos(-60°)=cos60°=
1
2

故選:C.
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點P(-2,-3),在x軸、y軸上截距相等的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的首項a1=-1,a4=27,那么它的前4項之和S4等于( 。
A、-34B、52C、40D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx+ny+2=0(m>0,n>0)截得圓(x+3)2+(y+1)2=1的弦長為2,則
1
m
+
3
n
的最小值為( 。
A、6B、8C、10D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
C
n-1
n+1
=21,則(2
x
-
1
x
n的二項展開式中的常數(shù)項為(  )
A、160B、-160
C、960D、-960

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=sin(πx+
π
2
),下列命題正確的是( 。
A、f(x)的周期為π,且在[0,1]上單調(diào)遞增
B、f(x)的周期為2,且在[0,1]上單調(diào)遞減
C、f(x)的周期為π,且在[-1,0]上單調(diào)遞增
D、f(x)的周期為2,且在[-1,0]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn是數(shù)列{an}的前n項和,an=
1
n(n+1)
,則S1=1-
1
2
,S2=1-
1
3
,S3=1-
1
4
,S4=1-
1
5
,由此可以歸納出( 。
A、Sn=1-
1
n
B、Sn=1-
1
(n-1)
C、Sn=1-
1
n+1
D、Sn=1-
1
n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D為AB的中點,且CD⊥DA1
(1)求證:BB1⊥平面ABC.
(2)求證:BC1∥平面CA1D.
(3)求三棱錐C-A1BD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD為菱形,O為A1C1
與B1D1交點,已知AA1=AB=1,∠BAD=60°.
(Ⅰ)求證:A1C1⊥平面B1BDD1;
(Ⅱ)求證:AO∥平面BC1D;
(Ⅲ)設(shè)點M在△BC1D內(nèi)(含邊界),且OM⊥B1D1,說明滿足條件的點M的軌跡,并求OM的最小值.

查看答案和解析>>

同步練習(xí)冊答案