某班對期中考試成績優(yōu)秀的學(xué)生進(jìn)行獎勵,全班共有5人獲獎,其中有2個來自A學(xué)習(xí)小組,2人來自B學(xué)習(xí)小組,1人來自C學(xué)習(xí)小組,現(xiàn)讓這5人排成一排合影,要求同學(xué)習(xí)小組的同學(xué)不能相鄰,那么不同的排法共有
 
種.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:分兩類,第一類,是B,C兩個小組的三個學(xué)生分別被A小組的三個學(xué)生分別隔,第二類,是B,C兩個小組中其中一名學(xué)生相鄰,根據(jù)分類計數(shù)原理可得.
解答: 解:設(shè)三個小組分別為A,B,C,對應(yīng)的學(xué)生為2,2,1名,
分兩類:第一類是B,C兩個小組的三個學(xué)生分別被A小組的三個學(xué)生分別隔開有
A
2
2
A
3
3
=12種;
第二類是B,C兩個小組中其中一名學(xué)生相鄰,
先從B組選1人和C組的1人捆綁在一起和標(biāo)B組的另外1人形成了三個間隔,將A組的2人插入到間隔中,有
C
1
2
A
2
2
A
2
2
A
2
3
=48.
根據(jù)分類計數(shù)計數(shù)原理得共有12+48=60種.
故答案為:60
點評:本題考查排列、組合的運用,涉及分類計數(shù)原理的應(yīng)用,本題實際是不相鄰問題,可用插空法分析求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)時,f(x)=2x+
1
5
,則f(log220)=( 。
A、-1
B、
4
5
C、1
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

光線通過一塊玻璃,其強度要損失10%,把幾塊這樣的玻璃重疊起來,設(shè)光線原來的強度為k,通過x塊玻璃以后強度為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)通過多少塊玻璃以后,光線強度減弱到原來的
1
4
以下.
(參考數(shù)據(jù):lg2≈0.3010,lg3≈0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)欲建造一個無蓋的長方體水池,其長、寬、高分別為a、a、b,且a2•b=3,已知底面的單位造價為150元,四壁的單位造價為100元,
(1)試求無蓋的長方體水池的總造價y表示為a的函數(shù);
(2)當(dāng)a為何值時,總價y取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2cos2(π+x)+2sin(
π
2
+x)cos(
2
+x)
sin(
π
2
+x)
,
(1)求f(x)的定義域;
(2)若sina=
4
5
且cosa=
3
5
,求f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=xlnx,若f′(x0)=2,則x0等于( 。
A、e2
B、e
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx+c,且b>0,若對任意x有f(x)≥0,則
f(1)
b
的最小值為(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在有限數(shù)列{an}中,Sn是{an}的前n項和,我們把
S1+S2+S3+…+Sn
n
稱為數(shù)列{an}的“均和”.現(xiàn)有一個共2010項的數(shù)列{an}:a1,a2,a3,…,a2009,a2010若其“均和”為2011,則有2011項的數(shù)列1,a1,a2,a3,…,a2009,a2010的“均和”為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項公式為an=
1
(n+1)(n+2)
,其前n項和為
7
18
,則n為(  )
A、5B、6C、7D、8

查看答案和解析>>

同步練習(xí)冊答案