分析 (1)若f(x)為“局部奇函數(shù)”,則根據(jù)定義驗(yàn)證條件是否成立即可;
(2)利用局部奇函數(shù)的定義,求出使方程f(-x)=-f(x)有解的實(shí)數(shù)m的取值范圍,可得答案.
解答 解:(1)f(x)為“局部奇函數(shù)”等價(jià)于關(guān)于x的方程f(-x)=-f(x)有解.
當(dāng)f(x)=ax2+2x-4a(a∈R)時(shí),
方程f(-x)=-f(x)即2a(x2-4)=0,有解x=±2,
所以f(x)為“局部奇函數(shù)”.
(2)當(dāng)f(x)=2x+m時(shí),f(-x)=-f(x)可化為2x+2-x+2m=0,
因?yàn)閒(x)的定義域?yàn)閇-1,1],所以方程2x+2-x+2m=0在[-1,1]上有解.
令t=2x,t∈[$\frac{1}{2}$,2],則-2m=t+$\frac{1}{t}$
設(shè)g(t)=t+$\frac{1}{t}$,則g'(t)=1-$\frac{1}{{t}^{2}}$=$\frac{{t}^{2}-1}{{t}^{2}}$,
當(dāng)t∈(0,1)時(shí),g'(t)<0,故g(t)在(0,1)上為減函數(shù),
當(dāng)t∈(1,+∞)時(shí),g'(t)>0,故g(t)在(1,+∞)上為增函數(shù).
所以t∈[$\frac{1}{2}$,2]時(shí),g(t)∈[2,$\frac{5}{2}$].
所以-2m∈[2,$\frac{5}{2}$],即m∈[-$\frac{5}{4}$,-1].
點(diǎn)評(píng) 本題主要考查新定義的應(yīng)用,利用新定義,建立方程關(guān)系,然后利用函數(shù)性質(zhì)進(jìn)行求解是解決本題的關(guān)鍵,考查學(xué)生的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,3) | B. | (3,2) | C. | (3,6) | D. | (3,7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | r1<r3<r4<r2 | B. | r2<r4<r3<r1 | C. | r4<r2<r1<r3 | D. | r3<r1<r2<r4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4弧度 | B. | 3弧度 | C. | 2弧度 | D. | 1弧度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com