16.設(shè)全集為R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁RA)∩B.

分析 求出A∪B然后求出CR(A∪B),通過求出CRA求解(CRA)∩B.

解答 解:A∪B={x|2<x<10}
CR(A∪B)={x|x≤2或x≥10}
CRA={x|x<3或x≥7}
(CRA)∩B={x|2<x<3或7≤x<10}

點評 本題考查交、并、補集的混合運算,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知命題p:?x∈R,x2+x+1>0;命題q:?x∈R,x3=1-x2,下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線2ax-by+2=0(a>0,b>0)平分圓x2+y2+2x-4y+1=0,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和Sn滿足:Sn=2(an-1),數(shù)列{bn}滿足:對任意n∈N*有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)記cn=$\frac{_{n}}{{a}_{n}}$,數(shù)列{cn}的前n項和為Tn,證明:當n≥6時,n|2-Tn|<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.條件p:-2<x<4,條件q:(x+2)(x-a)<0,若p是q的充分不必要條件,則a的取值范圍是( 。
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在平面直角坐標系中,已知點P(3,0)在圓C:(x-m)2+(y-2)2=40內(nèi),動直線過點P且交圓C于A、B兩點,若△ABC的面積的最大值是20,則實數(shù)m的取值范圍是( 。
A.(-3,-1]∪[7,9)B.[-3,-1]∪[7,9)C.[7,9)D.(-3,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{4}$))的值是( 。
A.-$\frac{1}{9}$B.-9C.$\frac{1}{9}$D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)全集U={1,2,3,4,5,6},已知集合A={1,3,4},B={3,5,6},
求:
(1)A∩B,A∪B
(2)(∁UA)∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知角α始邊與x軸的正半軸重合,終邊在直線2x+y=0上,則sin2α=$-\frac{4}{5}$.

查看答案和解析>>

同步練習冊答案