【題目】f(x)是定義在(0,+∞)上單調函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

【答案】C
【解析】解:∵f(x)是定義在(0,+∞)上單調函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,
∴設f(x)﹣lnx=t,則f(t)=e+1,
即f(x)=lnx+t,
令x=t,則f(t)=lnt+t=e+1,
則t=e,
即f(x)=lnx+e,
函數(shù)的導數(shù)f′(x)= ,
則由f(x)﹣f′(x)=e得lnx+e﹣ =e,
即lnx﹣ =0,
設h(x)=lnx﹣ ,
則h(1)=ln1﹣1=﹣1<0,h(e)=lne﹣ =1﹣ >0,
∴函數(shù)h(x)在(1,e)上存在一個零點,即方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是(1,e),
故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在四面體中,,,,則四面體外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(量大供應量)如下表所示:

資源\消耗量\產(chǎn)品

甲產(chǎn)品(每噸)

乙產(chǎn)品(每噸)

資源限額(每天)

煤(t)

9

4

360

電力(kwh)

4

5

200

勞動力(個)

3

10

300

利潤(萬元)

6

12

問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

時,求曲線在點處的切線方程;

求函數(shù)的單調區(qū)間;

若函數(shù)有最值,寫出的取值范圍.(只需寫出結論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC

(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍.

(2)設,證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個命題:

1命題,使得,則,都有;

2)已知函數(shù)f(x)|log2x|ab,f(a)f(b),ab1;

3若平面α內(nèi)存在不共線的三點到平面β的距離相等,則平面α平行于平面β;

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關于點對稱

其中真命題的序號為______________.(寫出所有真命題的序號)

查看答案和解析>>

同步練習冊答案