【題目】f(x)是定義在(0,+∞)上單調函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
【答案】C
【解析】解:∵f(x)是定義在(0,+∞)上單調函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,
∴設f(x)﹣lnx=t,則f(t)=e+1,
即f(x)=lnx+t,
令x=t,則f(t)=lnt+t=e+1,
則t=e,
即f(x)=lnx+e,
函數(shù)的導數(shù)f′(x)= ,
則由f(x)﹣f′(x)=e得lnx+e﹣ =e,
即lnx﹣ =0,
設h(x)=lnx﹣ ,
則h(1)=ln1﹣1=﹣1<0,h(e)=lne﹣ =1﹣ >0,
∴函數(shù)h(x)在(1,e)上存在一個零點,即方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是(1,e),
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(量大供應量)如下表所示:
資源\消耗量\產(chǎn)品 | 甲產(chǎn)品(每噸) | 乙產(chǎn)品(每噸) | 資源限額(每天) |
煤(t) | 9 | 4 | 360 |
電力(kwh) | 4 | 5 | 200 |
勞動力(個) | 3 | 10 | 300 |
利潤(萬元) | 6 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)若函數(shù)有最值,寫出的取值范圍.(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍.
(2)設,證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下四個命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關于點對稱.
其中真命題的序號為______________.(寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com