(本題滿分12分)

已知圓過點,且與圓:關(guān)于直線對稱.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)為圓上的一個動點,求的最小值;

(Ⅲ)過點作兩條相異直線分別與圓相交于,且直線和直線的傾斜角互補(bǔ),為坐標(biāo)原點,試判斷直線是否平行?請說明理由.

 

 

【答案】

(Ⅰ)圓的方程為

(Ⅱ)的最小值為(

(Ⅲ)直線一定平行,證明略

【解析】解:(Ⅰ)設(shè)圓心,則,解得……………2分

則圓的方程為,將點的坐標(biāo)代入得,

故圓的方程為………4分

(Ⅱ)設(shè),則,

 

==,

所以的最小值為(可由線性規(guī)劃或三角代換求得)………………8分

(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),

,

,得 

  因為點的橫坐標(biāo)一定是該方程的解,

故可得 

  同理,,

所以=

  所以,直線一定平行………………………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案