16、設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,在進(jìn)入該商場(chǎng)的1位顧客,既購(gòu)買甲種商品也購(gòu)買乙商品的概率為
0.3
(結(jié)果用小數(shù)表示).
分析:由題意知顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,購(gòu)買甲種商品也購(gòu)買乙商品表示相互獨(dú)立事件事件同時(shí)發(fā)生,根據(jù)公式得到結(jié)果.
解答:解:∵由題意知顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,
且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,
設(shè)事件A為顧客購(gòu)買甲商品,事件B為顧客購(gòu)買乙商品,
∴購(gòu)買甲種商品也購(gòu)買乙商品表示事件A和B同時(shí)發(fā)生,
根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率得到P=0.5×0.6=0.3
故答案為:0.3
點(diǎn)評(píng):本題考查運(yùn)用概率知識(shí)解決實(shí)際問(wèn)題的能力,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,相互獨(dú)立事件是指,兩事件發(fā)生的概率互不影響,注意應(yīng)用相互獨(dú)立事件同時(shí)發(fā)生的概率公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品也是相互獨(dú)立的.
(Ⅰ)求進(jìn)入商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;
(Ⅱ)求進(jìn)入商場(chǎng)的1位顧客至少購(gòu)買甲、乙兩種商品中的一種的概率;
(Ⅲ)記ξ表示進(jìn)入商場(chǎng)的3位顧客中至少購(gòu)買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品也是相互獨(dú)立的.
(Ⅰ)求進(jìn)入商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;
(Ⅱ)求進(jìn)入商場(chǎng)的3位顧客中至少有2位顧客既未購(gòu)買甲種也未購(gòu)買乙種商品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品也是相互獨(dú)立的.
(Ⅰ)求進(jìn)入商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;
(Ⅱ)求進(jìn)入商場(chǎng)的1位顧客至少購(gòu)買甲、乙兩種商品中的一種的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為,購(gòu)買乙種商品的概率為,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品也是相互獨(dú)立的。

   (1)求進(jìn)入商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;

   (2)求進(jìn)入商場(chǎng)的1位顧客至少購(gòu)買甲、乙兩種商品中的一種的概率;

   (3)記表示進(jìn)入商場(chǎng)的3位顧客中至少購(gòu)買甲、乙兩種商品中的一種的人數(shù),求的分布列及期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案