已知雙曲線的左右頂點分別是,點是雙曲線上異于點的任意一點。若直線的斜率之積等于2,則該雙曲線的離心率等于        

解析試題分析:利用斜率公式計算斜率,可得P的軌跡方程,即為雙曲線方程,從而可求雙曲線的離心率。設(shè)點P(x,y),則可知直線的斜率之積等于2,即為

故答案為
考點:雙曲線的幾何性質(zhì)
點評:本題考查雙曲線的幾何性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

在橢圓的焦點為,點p在橢圓上,若,則____   =__    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

短軸長為,離心率e=的橢圓的兩焦點為F1、F2,過F1作直線交橢圓于A、B兩點,則△ABF2周長為_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線的焦點恰好是雙曲線的右頂點,且漸近線方程為,則雙曲線方程為                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

直線與曲線的交點的個數(shù)是        個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,已知是橢圓 的左、右焦點,點在橢圓上,線段與圓相切于點,且點為線段的中點,則橢圓的離心率為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線y2=2x的焦點是F,點P是拋物線上的動點,又有點A(3,2).
則|PA|+|PF|的最小值是       ,取最小值時P點的坐標(biāo)           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知雙曲線過點(4,),漸近線方程為y=±x,圓C經(jīng)過雙曲線的一個頂點和一個焦點且圓心在雙曲線上,則圓心到該雙曲線的中心的距離是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知雙曲線的一條漸近線方程為,則其離心率為    

查看答案和解析>>

同步練習(xí)冊答案