10.如圖的三視圖所對(duì)應(yīng)的立體圖形可以是( 。
A.B.C.D.

分析 如圖所示,由三視圖可知:該幾何題為四棱錐,其中側(cè)面PBC⊥底面ABCD,PB=PC,底面為正方形.即可得出.

解答 解:如圖所示,
由三視圖可知:該幾何題為四棱錐,其中側(cè)面PBC⊥底面ABCD,PB=PC,底面為正方形.
故選:A.

點(diǎn)評(píng) 本題考查了四棱錐的三視圖與空間位置關(guān)系,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$,則|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知空間兩點(diǎn)A(3,3,1),B(-1,1,5),則線段AB的長(zhǎng)度為(  )
A.6B.$2\sqrt{6}$C.$4\sqrt{3}$D.$2\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的T的值為( 。
A.57B.120C.183D.247

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在R上的奇函數(shù)f(x)是周期為2的周期函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x-1,則f(log23)的值為-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線y=kx+3(k≠0)與圓(x-3)2+(y-2)2=4相交于A、B兩點(diǎn),若$|AB|=2\sqrt{3}$,則k的值為$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若命題“p∧(¬q)”與“¬p”均為假命題,則( 。
A.p真q真B.p假q真C.p假q假D.p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$,且$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-5$\overrightarrow{a}$+6$\overrightarrow$,$\overrightarrow{CD}$=7$\overrightarrow{a}$-2$\overrightarrow$,共線的三點(diǎn)是A、B、D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在?ABCD中,AB=AC=1,∠ACD=90°,將它沿著對(duì)角線AC折起,使AB與CD成60°角,則BD的長(zhǎng)度為( 。
A.2B.2或$\sqrt{2}$C.$\sqrt{2}$D.3$\sqrt{2}$或2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案