【題目】在面積為1的正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則△PAB的面積大于等于 的概率是 .
【答案】
【解析】解:設(shè)正方形ABCD中,E、F分別為AD、BC的中點(diǎn) ∵四邊形ABCD是正方形,E、F分別為AD、BC的中點(diǎn)
∴EF∥AB且EF=AB,可得四邊形ABFE是矩形
∵正方形ABCD面積為1,∴AB=1且AE= AD=
當(dāng)點(diǎn)P落在線段EF上時(shí),△PAB的面積等于矩形ABFE面積的一半,
此時(shí)S△ABP= S矩形ABFE=
因此,當(dāng)點(diǎn)P落在正方形ABCD內(nèi)部,且在線段EF上或EF的上方時(shí),
可使△PAB的面積大于等于
∴△PAB的面積大于等于 的概率為P= =
所以答案是:
【考點(diǎn)精析】本題主要考查了幾何概型的相關(guān)知識(shí)點(diǎn),需要掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中, , , 的面積為.
(Ⅰ)求的長(zhǎng);
(Ⅱ)若函數(shù)的圖象經(jīng)過(guò)三點(diǎn),其中為的圖象與軸相鄰的兩個(gè)交點(diǎn),求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(x+ )n展開式的二項(xiàng)式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項(xiàng)為 ,求m的值;
(3)若展開式中系數(shù)最大項(xiàng)只有第6項(xiàng)和第7項(xiàng),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從一批有10個(gè)合格品與3個(gè)次品的產(chǎn)品中,一件一件地抽取產(chǎn)品,設(shè)各個(gè)產(chǎn)品被抽取到的可能性相同.在下列三種情況下,分別求出直到取出合格品為止時(shí)所需抽取次數(shù)x的分布列.
(1)每次取出的產(chǎn)品都不放回此批產(chǎn)品中;
(2)每次取出的產(chǎn)品都立即放回此批產(chǎn)品中,然后再取出一件產(chǎn)品;
(3)每次取出一件產(chǎn)品后總以一件合格品放回此批產(chǎn)品中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該縣決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:“存在 ”,命題q:“曲線 表示焦點(diǎn)在x軸上的橢圓”,命題s:“曲線 表示雙曲線”
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在[﹣1,1]上的函數(shù)f(x)滿足:①對(duì)任意a,b∈[﹣1,1],且a+b≠0,都有 >0成立;②f(x)在[﹣1,1]上是奇函數(shù),且f(1)=1.
(1)求證:f(x)在[﹣1,1]上是單調(diào)遞增函數(shù);
(2)解關(guān)于x不等式f(x)<f( x+1);
(3)若f(x)≤m2﹣2am﹣2對(duì)所有的x∈[﹣1,1]及a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對(duì)他前次考試的數(shù)學(xué)成績(jī)、物理成績(jī)進(jìn)行分析.下面是該生次考試的成績(jī).
88 | 83 | 117 | 92 | 108 | 100 | 112 | |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)他的數(shù)學(xué)成績(jī)與物理成績(jī)哪個(gè)更穩(wěn)定?請(qǐng)給出你的理由;
(2)已知該生的物理成績(jī)與數(shù)學(xué)成績(jī)是線性相關(guān)的,若該生的物理成績(jī)達(dá)到分,請(qǐng)你估計(jì)他的數(shù)學(xué)成績(jī)大約是多少?
(參考公式: , )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com