【題目】某網站從春節(jié)期間參與收發(fā)網絡紅包的手機用戶中隨機抽取2000名進行調查,將受訪用戶按年齡分成5組: 并整理得到如下頻率分布直方圖:
(1)求的值;
(2)從春節(jié)期間參與收發(fā)網絡紅包的手機用戶中隨機抽取一人,估計其年齡低于40歲的概率;
(3)估計春節(jié)期間參與收發(fā)網絡紅包的手機用戶的平均年齡.
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.
(1)求該三棱柱的體積;
(2)設D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調查研究后發(fā)現,每天空氣污染的指數隨時刻(時)變化的規(guī)律滿足表達式,,其中為空氣治理調節(jié)參數,且.
(1)令,求的取值范圍;
(2)若規(guī)定每天中的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節(jié)參數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9.
(1)求證:無論m為何值,直線l總過定點A,并說明直線l與圓C總相交.
(2)m為何值時,直線l被圓C所截得的弦長最?請求出該最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,離心率等于,它的一個短軸端點恰好是拋物線的焦點.
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點,是橢圓上位于直線兩側的動點.
①若直線的斜率為,求四邊形面積的最大值;
②當運動時,滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寫出下面兩個的相關命題的逆命題、否命題、逆否命題,并判斷它們的真假:
(1)命題:若,則.
逆命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
(2)命題:設是實數,如果,那么有實數根。
否命題:_______________________________________________________(________)
逆否命題:_____________________________________________________(________)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,
(1)求該橢圓的標準方程;
(2)(文)若是橢圓上的動點,過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點,求點N的軌跡方程;
(理)若已知點,是橢圓上的動點,求線段中點的軌跡方程;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數在區(qū)間[10,15)內的人數;
(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數在區(qū)間[25,30)內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com