精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,空間四邊形ABCD中,E,F,GH分別是AB,BC,CDDA上的點,且滿足

(1)求證:四邊形EFGH是梯形;

(2)若BDa,求梯形EFGH的中位線的長.

【答案】(1)見解析;(2).

【解析】試題分析:(1)利用比例關系,求出EHBD,FGBD,EH=BD,FG=BD,即可證明四邊形EFGH是梯形;
(2)EH=a,FG=a,即可求梯形EFGH的中位線的長.

試題解析:

(1)證明 因為,

所以EHBD,且EHBD

因為=2,

所以FGBD,且FGBD

因而EHFG,且EHFG,

故四邊形EFGH是梯形.

(2)解 因為BDa,所以EHa,FGa,所以梯形EFGH的中位線的長為 (EHFG)=a

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數,乙組記錄中有一個數據模糊,無法確認,在圖中用表示.

(1)若乙組同學投籃命中次數的平均數比甲組同學的平均數少1,求及乙組同學投籃命中次數的方差;

(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數之和為16的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

(1)求證: 平面

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖, 為斜邊的等腰直角三角形與等邊三角形所在平面互相垂直, 且點滿足.

(1)求證:平面平面;

(2)求平面 與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a=(12),b=(-2,n),ab的夾角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】重慶因夏長酷熱多伏旱而得名火爐,八月是重慶最熱、用電量最高的月份.下圖是沙坪壩區(qū)居民八月份用電量(單位:度)的頻率分布直方圖,其分組區(qū)間依次為:,,,,,,

(1)求直方圖中的;

(2)根據直方圖估計八月份用電量的眾數和中位數;

(3)在用電量為,,的四組用戶中,用分層抽樣的方法抽取11戶居民,則用電量在的用戶應抽取多少戶?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠商調查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據這10個賣場的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數據平均數的賣場命名為該型號電視機的星級賣場”.

(1)求在這10個賣場中,甲型號電視機的“星級賣場”的個數;

(2)若在這10個賣場中,乙型號電視機銷售量的平均數為26.7,求a>b的概率;

(3)若a=1,記乙型號電視機銷售量的方差為,根據莖葉圖推斷b為何值時,達到最值.

(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若四面體的三組對棱分別相等,即

給出下列結論:

四面體每個面的面積相等;

從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大于 而小于 ;

連結四面體每組對棱中點的線段相互垂直平分;

從四面體每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長;

其中正確結論的序號是__________(寫出所有正確結論的序號)

查看答案和解析>>

同步練習冊答案