【題目】半正多面體亦稱阿基米德多面體,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學的對稱美.如圖,將正方體沿交于一頂點的三條棱的中點截去一個三棱錐,如此共可截去八個三棱錐,得到一個有十四個面的半正多面體,它們的棱長都相等,其中八個為正三角形,六個為正方形,稱這樣的半正多面體為二十四等邊體.若二十四等邊體的棱長為2,則其體積為______;若其各個頂點都在同一個球面上,則該球的表面積為______

【答案】

【解析】

將二十四正多面體放入正方體中,結(jié)合圖形求出該幾何體的體積.判斷出正方體的中心即球心,由此求得球的半徑,進而求得球的表面積.

將二十四正多面體放入正方體中,如下圖所示,

由于二十四等邊體的棱長為,則正方體的棱長為.

該二十四正四面體是由棱長為的正方體沿各棱中點截去個三棱錐所得,

所以該二十四正四面體的體積為.

由于正方體的中心到正方體各棱中點的距離都為,

所以該二十四正四面體外接球的球心為,且半徑為,其表面積為.

故答案為:(1). (2).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體ABCDA1B1C1D1中,ACBD=O,E是線段B1C(含端點)上的一動點,則

OEBD1;

OEA1C1D;

③三棱錐A1BDE的體積不是定值;

OEA1C1所成的最大角為90°

上述命題中正確的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生興趣小組隨機調(diào)查了某市100天中每天的空氣質(zhì)量等級和當天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):

鍛煉人次

空氣質(zhì)量等級

[0,200]

(200,400]

(400,600]

1(優(yōu))

2

16

25

2(良)

5

10

12

3(輕度污染)

6

7

8

4(中度污染)

7

2

0

1)分別估計該市一天的空氣質(zhì)量等級為12,3,4的概率;

2)求一天中到該公園鍛煉的平均人次的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

3)若某天的空氣質(zhì)量等級為12,則稱這天空氣質(zhì)量好;若某天的空氣質(zhì)量等級為34,則稱這天空氣質(zhì)量不好.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認為一天中到該公園鍛煉的人次與該市當天的空氣質(zhì)量有關(guān)?

人次≤400

人次>400

空氣質(zhì)量好

空氣質(zhì)量不好

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD為矩形,點EPA線段上,PC平面BDE

1)請確定點E的位置;并說明理由.

2)若是等邊三角形,, 平面PAD平面ABCD,四棱錐的體積為,求點E到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,討論函數(shù)的單調(diào)性;

2, 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點,求證:平面;

(III)在線段BC上(含端點)是否存在點P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的極值;

2)若函數(shù)在區(qū)間內(nèi)存在零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是橢圓的左、右焦點,、兩點分別是橢圓的上、下頂點,是等腰直角三角形,延長交橢圓點,且的周長為.

1)求橢圓的方程;

2)設點是橢圓上異于、的動點,直線與直線分別相交于、兩點,點,試問:外接圓是否恒過軸上的定點(異于點)?若是,求該定點坐標;若否,說明理由.

查看答案和解析>>

同步練習冊答案