給出下列四個命題:
①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;
②命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
③若隨機變量ξ~N(2,σ2)且P(1≤ξ≤3)=0.4,則P(ξ≥3)=0.3;
④已知n個散點Ai(xi,yi),(i=1,2,3,…,n)的線性回歸方程為
y
=bx+a
,若a=
.
y
-b
.
x
,(其中
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi
),則此回歸直線必經(jīng)過點(
.
x
,
.
y
).其中正確命題是
 
分析:舉出反例說明第一個不正確,第二個命題的否定,有一個不等號出錯,第三個命題是正態(tài)分布的特點,是對稱性,可以做出結(jié)果正確,第四個命題說明回歸直線通過樣本中心點.
解答:解:①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;可以舉出兩個數(shù)字8和
1
2
,
滿足x1+x2>2且x1x2>1,但不能推出x1>1且x2>1成立,故①不正確,
②命題“?x∈R,x2≥0”的否定是“?x∈R,x2<0”;故②不正確,
③若隨機變量ξ~N(2,σ2)且P(1≤ξ≤3)=0.4,則P(ξ≥3)=
1
2
(1-0.4)=0.3;故③正確,
④已知n個散點Ai(xi,yi),(i=1,2,3,…,n)的線性回歸方程為
y
=bx+a
,若a=
.
y
-b
.
x
,(其中
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi
),則此回歸直線必經(jīng)過點(
.
x
,
.
y
),這說明回歸直線一定經(jīng)過樣本中心點,故④正確.
故答案為:③④
點評:本題考查充要條件,考查全稱命題的否定,考查正態(tài)分布的性質(zhì),考查線性回歸直線通過樣本中心點,是一個考查多個知識點的題目,可以把試卷上沒有考到的知識點以這樣形式考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案