【題目】如圖,四棱錐中,平面ABCD,底面ABCD是正方形,,EPC上一點,當FDC的中點時,EF平行于平面PAD.

(Ⅰ)求證:平面PCB

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ)

【解析】

(Ⅰ)平面可得,從而證出平面,則,

從而可證出平面;

(Ⅱ)以點為坐標原點,分別以直線,軸,軸,軸,建立空間直角坐標系,求得各點的坐標,求出平面和平面的的一個法向量,再根據法向量求出二面角.

(Ⅰ)證:平面,

正方形中,,平面

平面,,

,當的中點時,平行平面,所以的中點,

,,平面;

(Ⅱ)解:以點為坐標原點,分別以直線,軸,軸,軸,建立如圖所示的空間直角坐標系,

,,,,

設平面的法向量為,則,,

,令,得到,;

,,,且平面

平面的一個法向量為;

設二面角的平面角為,由圖可知角為銳角,

二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為D的函數(shù)fx),若存在區(qū)間[mn]D,同時滿足下列條件:①fx)在[m,n]上是單調的;②當定義域是[m,n]時,fx)的值域也是[m,n],則稱[m,n]為該函數(shù)的和諧區(qū)間”.下列函數(shù)存在和諧區(qū)間的有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a,b,c為實數(shù),fx=x+a)(x2+bx+c),gx=ax+1)(cx2+bx+1).記集合S={x|fx=0,x∈R},T={x|gx=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數(shù),則下列結論不可能的是( )

A.{S}=1{T}=0B.{S}=1{T}=1C.{S}=2{T}=2D.{S}=2{T}=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點P,Q分別是曲線y=xe﹣x(e是自然對數(shù)的底數(shù))和直線y=x+3上的動點,則P,Q兩點間距離的最小值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y萬元有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

1)畫出散點圖并判斷是否線性相關;

2)如果線性相關,求線性回歸方程;

3)估計使用年限為10年時,維修費用是多少?

附注:①參考公式:回歸方程中斜率和截距的最小二乘估計分別為;

②參考數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果存在非零常數(shù),對于函數(shù)定義域上的任意,都有成立,那么稱函數(shù)為函數(shù)

)若,,試判斷函數(shù)是否是函數(shù)?若是,請證明:若不是,主說明理由:

)求證:若是單調函數(shù),則它是函數(shù)

)若函數(shù)函數(shù),求實數(shù)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據頻率分布直方圖計算圖中各小長方形的寬度;

2)試估計該公司在若干地區(qū)各投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據,并整理得到下表:

廣告投入(單位:萬元)

1

2

3

4

5

銷售收益(單位:萬元)

2

3

3

7

由表中的數(shù)據顯示,之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年東京夏季奧運會將設置米男女混合泳接力這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出22女共計4名運動員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運動員完成, 每個運動員都要出場. 現(xiàn)在中國隊確定了備戰(zhàn)該項目的4名運動員名單,其中女運動員甲只能承擔仰泳或者自由泳,男運動員乙只能承擔蝶泳或自由泳,剩下的男女各一名運動員則四種泳姿都可以上,那么中國隊共有( )種兵布陣的方式.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線內有一點,過的兩條直線,分別與拋物線交于,兩點,且滿足,,已知線段的中點為,直線的斜率為.

(1)求證:點的橫坐標為定值;

(2)如果,點的縱坐標小于3,求的面積的最大值.

查看答案和解析>>

同步練習冊答案