精英家教網 > 高中數學 > 題目詳情

【題目】在三棱錐S-ABC中,△ABC是邊長為6的正三角形,SA=SB=SC=15,平面DEFH分別與AB,BC,SC,SA交于點D,E,F(xiàn),H.且D,E分別是AB,BC的中點,如果直線SB∥平面DEFH,那么四邊形DEFH的面積為________

【答案】

【解析】

利用平面可以得到 ,從而 中點,同理可得 中點,再根據三棱錐為正三棱錐得到,故四邊形為矩形,從而可計算其面積.

因為,故在底面上的射影為底面三角形的外心,又為等邊三角形,故在底面上的射影為底面三角形的中心,所以三棱錐為正三棱錐,所以

平面,平面,平面平面,故,因,故,,同理,

,所以四邊形為平行四邊形,

又由為中點可得,故,故四邊形為矩形.

,故矩形的面積為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( ),B( , ).則下列說法錯誤的是(

A.φ=
B.函數f(x)的一條對稱軸為x=
C.為了得到函數y=f(x)的圖象,只需將函數y=2sin2x的圖象向右平移 個單位
D.函數f(x)的一個單調減區(qū)間為[ , ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知分別為橢圓C 的左、右焦點,點 在橢圓上,且 軸,的周長為6.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)E,F是橢圓C上異于點的兩個動點,如果直線PE與直線PF的傾斜角互補,證明:直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列{an}的前n項和為Sn,且an和Sn滿足:4Sn=(an+1)2 (n=1,2,3……),

(1)求{an}的通項公式;(2)設bn ,求{bn}的前n項和Tn;

(3)在(2)的條件下,對任意n∈N*,Tn都成立,求整數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在路邊安裝路燈,燈柱的高為米,路寬為23米,燈桿與燈柱角,路燈采用錐形燈罩,燈罩軸線與燈桿垂直,請你建立適當直角坐標系,解決以下問題:

(1)當

(2)且燈罩軸線正好通過道路路面的中線時,求燈桿的長為多少米?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖5,在四棱錐P-ABCD中,PA平面ABCD,AB=4,BC=3,AD=5,DAB=ABC=90°,E是CD的中點.

)證明:CD平面PAE;

)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C1:y2=2px(p>0)的焦點為F,拋物線上存在一點G到焦點的距離為3,且點G在圓C:x2+y2=9上. (Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2 =1(m>n>0)的一個焦點與拋物線C1的焦點重合,且離心率為 .直線l:y=kx﹣4交橢圓C2于A、B兩個不同的點,若原點O在以線段AB為直徑的圓的外部,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列是公差為2的等差數列,數列滿足b1=1,b2=2,且anbnbnnbn1.

(1)求數列,的通項公式;

(2)設數列滿足,數列的前n項和為,若不等式

對一切n∈N*恒成立,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各點中,在不等式表示的平面區(qū)域內的是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案