已知直線y=ax+1與雙曲線3x2-y2=1相交于A、B兩點,若以AB為直徑的圓經(jīng)過坐標(biāo)原點,求a的值.
聯(lián)立
y=ax+1
3x2-y2=1
,消去y得,(3-a2)x2-2ax-2=0.
由△=(-2a)2+8(3-a2)=24-4a2>0,得-
6
<a<
6

設(shè)A(x1,y1),B(x2,y2).
x1+x2=
2a
3-a2
x1x2=-
2
3-a2

所以y1y2=(ax1+1)(ax2+1)=a2x1x2+a(x1+x2)+1
=a2•(-
2
3-a2
)+a•
2a
3-a2
+1=1

因為以AB為直徑的圓經(jīng)過坐標(biāo)原點,
所以x1x2+y1y2=0.
-
2
3-a2
+1=0
,解得a=±1.
滿足-
6
<a<
6

所以a的值是±1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=ax+1與雙曲線3x2-y2=1;
(1)當(dāng)a為何值時,直線與雙曲線有一個交點;
(2)直線與雙曲線交于P、Q兩點且以PQ為直徑的圓過坐標(biāo)原點,求a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=ax+1與雙曲線3x2-y2=1交于A、B兩點,
(1)若以AB線段為直徑的圓過坐標(biāo)原點,求實數(shù)a的值.
(2)是否存在這樣的實數(shù)a,使A、B兩點關(guān)于直線y=
12
x
對稱?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=ax+1與雙曲線3x2-y2=1相交于A、B兩點,若以AB為直徑的圓經(jīng)過坐標(biāo)原點,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=ax+1與雙曲線3x2-y2=1交于A、B兩點,(1)若以AB線段為直徑的圓過坐標(biāo)原點,求實數(shù)a的值。(2)是否存在這樣的實數(shù)a,使A、B兩點關(guān)于直線對稱?說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆甘肅省高二第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

已知直線y=ax+1與雙曲線3x2-y2=1交于A、B兩點。

(1)若以AB線段為直徑的圓過坐標(biāo)原點,求實數(shù)a的值。

(2)是否存在這樣的實數(shù)a,使A、B兩點關(guān)于直線對稱?說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案