下列函數(shù)中定義域為[1,+∞)的是(  )
A、y=
x-1
+
x+1
B、y=
x2-1
C、y=(
1
2
)x-1
D、y=ln(x-1)
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件分別進(jìn)行判斷即可.
解答: 解:A.要使函數(shù)有意義,則
x-1≥0
x+1≥0
,解得x≥1,即函數(shù)的定義域為[1,+∞),滿足條件.
B.要使函數(shù)有意義,則x2-1≥0,解得x≥1或x≤-1,即函數(shù)的定義域為[1,+∞)∪(-∞,-1],不滿足條件.
C.函數(shù)的定義域為R,不滿足條件.
D.要使函數(shù)有意義,則x-1>0,解得x>1,即函數(shù)的定義域為(1,+∞),不滿足條件.
故選:A.
點評:本題主要考查函數(shù)定義域的求法,要求熟練掌握常見函數(shù)成立的條件,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2|x-1|,x≤2
-
1
2
x+3,x>2
,實數(shù)a,b,c互不相同,若f(a)=f(b)=f(c)=d,則a+b+c+d的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3•a11=4,則a5•a9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={1,2,3,4,5},B=[3,+∞),則圖中陰影部分所表示的集合為( 。
A、{0,1,2}
B、{0,1}
C、{1,2}
D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合M={x|-2<x<1},N={x|0<x<3},則N∩(∁UM)等于( 。
A、{x|0<x<1}
B、{x|1≤x<3}
C、{x|-2<x≤0}
D、{x|x≤-2或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是用二分法求方程f(x)=0近似解的程序框圖,其中f(a)f(b)<0.判斷框內(nèi)可以填寫的內(nèi)容有如下四個選擇:
①f(a)f(m)<0;
②f(a)f(m)>0;
③f(b)f(m)<0;
④f(b)f(m)>0.
其中正確的是(  )
A、①③B、②③C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)
的最小正周期為π,若其圖象向右平移
π
3
個單位后關(guān)于y軸對稱,則(  )
A、ω=2,φ=
π
3
B、ω=2,φ=
π
6
C、ω=4,φ=
π
6
D、ω=2,φ=-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={-1,0,1},B={y|y=x2+1,x∈A},則A∩B=( 。
A、{0}B、{1}
C、{0,1}D、{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:“?x∈Z,x2≥0”,則?p為( 。
A、?x∈Z,x2<0
B、?x∉Z,x2<0
C、?x0∈Z,x02≥0
D、?x0∈Z,x02<0

查看答案和解析>>

同步練習(xí)冊答案