|
|
|
|
|
2 |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
|
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
3 |
|
2 |
π |
4 |
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆吉林長春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
⊙O1和⊙O2的極坐標(biāo)方程分別為,.
⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.
【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用
(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。
(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(I),,由得.所以.
即為⊙O1的直角坐標(biāo)方程.
同理為⊙O2的直角坐標(biāo)方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.
解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com