如圖所示,已知為圓的直徑,點(diǎn)為線段上一點(diǎn),且,點(diǎn)為圓上一點(diǎn),且.點(diǎn)在圓所在平面上的正投影為點(diǎn),

(1)求證:
(2)求二面角的余弦值.

(1)詳見(jiàn)解析;(2)

解析試題分析:(1)要證,需先證平面,由于平面易證,故有,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bd/b/1o7w33.png" style="vertical-align:middle;" />,則證得平面;(2)綜合法是先找到二面角的一個(gè)平面角,不過(guò)必須根據(jù)平面角的定義證明,然后在中解出的三角函數(shù)值.
試題解析:(1)連接,由知,點(diǎn)的中點(diǎn),
又∵為圓的直徑,∴
知,,
為等邊三角形,從而. 3分
∵點(diǎn)在圓所在平面上的正投影為點(diǎn),
平面,又平面,
,       5分
得,平面,
平面,
.            6分

(2)(綜合法)過(guò)點(diǎn),垂足為,連接.         7分
由(1)知平面,又平面,
,又
平面,又平面,∴,      9分
為二面角的平面角.         10分
由(Ⅰ)可知,
,則
∴在中,
,即二面角的余弦值為.     14分
考點(diǎn):1、線線垂直和線面垂直的證明,2、二面角的計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,四邊形是菱形,,E為PB的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,且AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直,已知AB=2,AD=EF=1.

(Ⅰ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(Ⅱ)設(shè)平面CBF將幾何體EF-ABCD分割成的兩個(gè)錐體的體積分別為VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,,,異面直線所成
的角為.

(Ⅰ)求證:
(Ⅱ)設(shè)的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,是邊長(zhǎng)為2的正三角形. 若平面,平面平面, ,且

(1)求證://平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,AC為的直徑,D為的中點(diǎn),E為BC的中點(diǎn).

(Ⅰ)求證:AB∥DE;
(Ⅱ)求證:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED是邊長(zhǎng)為2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求幾何體ABCDFE的體積;
(Ⅱ)證明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在幾何體中,平面,是等腰直角三角形,,且,點(diǎn)的中點(diǎn).

(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐F-ABCD的底面ABCD是菱形,其對(duì)角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大。
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案