(2012•安徽模擬)已知角α,β的頂點在坐標原點,始邊與X軸的正半軸重合,α,β∈(0,π),角β的終邊與單位圓交點的橫坐標是-
5
13
,角α+β的終邊與單位圓交點的縱坐標是
3
5
,則cosα=
56
65
56
65
分析:根據(jù)角的范圍及同角三角函數(shù)的基本關(guān)系求出sinβ,根據(jù) α+β 的范圍及cos(α+β)的值求出sin (α+β)的值,利用兩角差的余弦公式計算cosα=cos[(α+β)-β]的值.
解答:解:由題意得 α、β∈(0,π),cosβ=-
5
13
,故
π
2
<β<π.
∴sinβ=
12
13
,∵sin(α+β)=
3
5
,∴
π
2
<α+β<π,
∴cos(α+β)=-
4
5
,
∴cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ=-
4
5
×(-
5
13
) +
12
13
×
3
5
=
56
65

故答案為:
56
65
點評:本題考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,注意角的范圍的確定,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)在復(fù)平面內(nèi),復(fù)數(shù)z=
1+i
i-2
對應(yīng)的點位于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)定義在R上的奇函數(shù)f(x)滿足:x≤0時f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,則f(2)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)(理)若變量x,y滿足約束條件
x+y-3≤0
x-y+1≥0
y≥1
,則z=|y-2x|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)下列說法不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及當取最大值時x的取值集合.
(2)在三角形ABC中,a,b,c分別是角A,B,C所對的邊,對定義域內(nèi)任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習冊答案