【題目】如圖,矩形ABCD中,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法正確的是 . (填序號)
①MB∥平面A1DE;
②|BM|是定值;
③A1C⊥DE.

【答案】①②
【解析】解:取CD中點F,連接MF,BF,則MF∥DA1 , BF∥DE,
∴平面MBF∥平面A1DE,
∴MB∥平面A1DE,
故①正確.
由∠A1DE=∠MNB,MN= A1D=定值,NB=DE=定值,
由余弦定理可得MB2=MN2+NB2﹣2MNNBcos∠MNB,
所以MB是定值,故②正確.
∵A1C在平面ABCD中的射影為AC,AC與DE不垂直,
∴故③不正確.
所以答案是:①②.

【考點精析】本題主要考查了直線與平面平行的判定的相關(guān)知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為 ,{bn}為等差數(shù)列,且b1=4,b3=10,則數(shù)列 的前n項和Tn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里裝有大小均勻的8個小球,其中有紅色球4個,編號分別為1,2,3,4;白色球4個,編號分別為2,3,4,5. 從盒子中任取4個小球(假設(shè)取到任何一個小球的可能性相同).

(1)求取出的4個小球中,含有編號為4的小球的概率;

(2)在取出的4個小球中,小球編號的最大值設(shè)為,求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是(
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.y=x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減,遞增,則不等式xf(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個結(jié)論中:
(1)如果兩個函數(shù)都是增函數(shù),那么這兩個函數(shù)的積運算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個;
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結(jié)論的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)x2,g(x)x1.

(1)若存在xR使f(x)<b·g(x),求實數(shù)b的取值范圍;

(2)設(shè)F(x)f(x)mg(x)1mm2,且|F(x)|上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點.
(I)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的極值點,求的極大值;

(2)求實數(shù)的范圍,使得恒成立.

查看答案和解析>>

同步練習(xí)冊答案