【題目】已知拋物線E的焦點為F,是拋物線E上一點,且

1求拋物線E的標準方程;

2設點B是拋物線E上異于點A的任意一點,直線AB與直線交于點P,過點Px軸的垂線交拋物線E于點M,設直線BM的方程為,kb均為實數(shù),請用k的代數(shù)式表示b,并說明直線BM過定點.

【答案】(1);(2)見解析

【解析】

1利用拋物線的定義與性質求p的值,即可寫出拋物線方程;2設點,由直線BM的方程和拋物線方程聯(lián)立,消去y,利用根與系數(shù)的關系和A,PB三點共線,化簡整理可得BM的方程,從而求出直線BM所過的定點.

解:1根據(jù)題意知,,①

因為,所以,②

聯(lián)立①②解得,;

所以拋物線E的標準方程為

2,;

又直線BM的方程為,代入,得;

由根與系數(shù)的關系,得,;③

軸及點P在直線上,得

則由A,P,B三點共線,得,

整理,得;

將③代入上式并整理,得,

由點B的任意性,得,即

所以

即直線BM恒過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1,BC=BB1,BAC=BCA=ABC,EA1BAB1的交點,D在線段AC,B1C∥平面A1BD.

(1)求證:BDA1C

(2)求證:AB1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某種設備的使用年限(年)與所支出的維修費用 (萬元)有如下統(tǒng)計:

2

3

4

5

6

2.2

3.8

5.5

6.5

7.0

已知, . ,

(1)求,

(2)具有線性相關關系,求出線性回歸方程;

(3)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1) 求函數(shù)的解析式;

(2) 如何由函數(shù)的通過適當圖象的變換得到函數(shù)的圖象, 寫出變換過程;

(3) 若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點,其焦距為,點在橢圓的內(nèi)部,點是橢圓上的動點,且恒成立,則橢圓離心率的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】牡丹江一中2019年將實行新課程改革,即除語、數(shù)、外三科為必考科目外,還要在理、化、生、史、地、政六科中選擇三科作為選考科目.已知某生的高考志愿為北京大學環(huán)境科學專業(yè),按照17年北大高考招生選考科目要求物、化必選,為該生安排課表(上午四節(jié)、下午四節(jié),上午第四節(jié)和下午第一節(jié)不算相鄰),現(xiàn)該生某天最后兩節(jié)為自習課,且數(shù)學不排下午第一節(jié),語文、外語不相鄰,則該生該天課表有( 。┓N.

A. 444B. 1776C. 1440D. 1560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),其中.以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線交于 兩點,記點, 相應的參數(shù)分別為, ,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標不變橫坐標伸長到原來的2倍,再橫坐標不變縱坐標伸長到原來的2倍,最后向右平移個單位而得到.

⑴求f(x)的解析式與最小正周期;

⑵求f(x)在x∈(0,π)上的值域與單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點, 軸的非負半軸為極軸的極坐標系中,直線的極坐標方程為.

(1)求曲線的極坐標方程;

(2)設直線與曲線相交于兩點,求的值.

【答案】(1)曲線的極坐標方程為: ;(2)6.

【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關系消參數(shù)得曲線的普通方程,再根據(jù)化為極坐標方程;(2)將直線l的極坐標方程代入曲線的極坐標方程得,再根據(jù)的值.

試題解析:解:1)將方程消去參數(shù),

∴曲線的普通方程為,

代入上式可得

∴曲線的極坐標方程為: -

2)設兩點的極坐標方程分別為,

消去

根據(jù)題意可得是方程的兩根,

,

型】解答
束】
23

【題目】選修4—5:不等式選講

已知函數(shù)

(1)時,求關于x的不等式的解集;

(2)若關于x的不等式有解,求a的取值范圍.

查看答案和解析>>

同步練習冊答案