設(shè)是集合A到B的映射,如果B={1,2},則A∩B只可能是
A.φ或{1}B.{1}C.φ或{2}D.φ或{1}或{2}
A
當(dāng)時(shí)可得,當(dāng)時(shí)可得,所以集合A可能為,則,故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分6分.
為保護(hù)環(huán)境,某單位采用新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品。已知該單位每月的處理量最多不超過300噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為300元。
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

20世紀(jì)90年代,氣候變化專業(yè)委員會(huì)向政府提供的一項(xiàng)報(bào)告指出:全球氣候逐年變暖的一個(gè)重要因素是人類在能源利用與森林砍伐中使CO2體積分?jǐn)?shù)增加。據(jù)測(cè),1990年、1991年、1992年大氣中的CO2體積分?jǐn)?shù)分別比1989年增加了1個(gè)可比單位、3個(gè)可比單位、6個(gè)可比單位。若用一個(gè)函數(shù)模擬20世紀(jì)90年代中每年CO2體積分?jǐn)?shù)增加的可比單位數(shù)與年份增加數(shù)(即當(dāng)年數(shù)與1989的差)的關(guān)系,模擬函數(shù)可選用二次函數(shù)(其中為常數(shù))或函數(shù) (其中為常數(shù),且),(1)根據(jù)題中的數(shù)據(jù),求的解析式;(2)如果1994年大氣中的CO2體積分?jǐn)?shù)比1989年增加了16個(gè)可比單位,請(qǐng)問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好?并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),對(duì)任意實(shí)數(shù)都有成立,若當(dāng)時(shí),恒成立,則的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時(shí),求該函數(shù)的定義域和值域;
(Ⅱ)如果在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則函數(shù)與函數(shù)的圖象可能是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)是R上的偶函數(shù),且當(dāng)時(shí),函數(shù)的解析式為
(1)求的值;
(2)用定義證明上是減函數(shù);
(3)求當(dāng)時(shí),函數(shù)的解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為。某公司每月最多生產(chǎn)臺(tái)報(bào)警系統(tǒng)裝置,生產(chǎn)臺(tái)的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤(rùn)是收入與成本之差。
(1)求利潤(rùn)函數(shù)及邊際利潤(rùn)函數(shù)
(2)利潤(rùn)函數(shù)與邊際利潤(rùn)函數(shù)是否具有相等的最大值
(3)你認(rèn)為本題中邊際利潤(rùn)函數(shù)取最大值的實(shí)際意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義:平面內(nèi)橫坐標(biāo)為整數(shù)的點(diǎn)稱為“左整點(diǎn)”.過函數(shù)y=圖象上任意兩個(gè)“左整點(diǎn)”作直線,則傾斜角大于45°的直線條數(shù)為___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案