設為實數(shù),函數(shù)。
(1)若,求的取值范圍;
(2)求的最小值;
(3)設函數(shù),直接寫出(不需給出演算步驟)不等式的解集.
(1);(2);(3)當時,解集為;當時,解集為;當時,解集為
解析試題分析:(1)由,結合解析式得,分和兩種情況即可求;
(2)由已知函數(shù)解析式可分和兩種情況分別得和結合二次函數(shù)的圖像和單調性可得和,從而有;(3)結合二次函數(shù)的圖像和一元二次不等式解集直接寫出即可.
試題解析: (1)若,則 1分
或 2分 3分
(2)當時, 5分
當時, 7分
綜上 8分
(3)時,得,
當時,; 10分
當時,△>0,得: 11分
討論得:當時,解集為; 12分
當時,解集為; 13分
當時,解集為. 14分
考點:1.考查函數(shù)的概念、性質、圖象;2.解一元二次不等式;3.運用數(shù)形結合、分類討論的思想方法進行探索、分析與解決問題的綜合能力
科目:高中數(shù)學 來源: 題型:解答題
某廠生產(chǎn)某種產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件,需另投入成本為.當年產(chǎn)量不足千件時,(萬元).當年產(chǎn)量不小于千件時,(萬元).每件商品售價為萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
對于函數(shù)若存在,使得成立,則稱為的不動點.
已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上、兩點的橫坐標是函數(shù)的不動點,且、兩點關于直線對稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
張林在李明的農場附近建了一個小型工廠,由于工廠生產(chǎn)須占用農場的部分資源,因此李明每年向張林索賠以彌補經(jīng)濟損失并獲得一定凈收入.工廠在不賠付農場的情況下,工廠的年利潤(元)與年產(chǎn)量(噸)滿足函數(shù)關系.若工廠每生產(chǎn)一噸產(chǎn)品必須賠付農場元(以下稱為賠付價格).
(Ⅰ)將工廠的年利潤(元)表示為年產(chǎn)量(噸)的函數(shù),并求出工廠獲得最大利潤的年產(chǎn)量;
(Ⅱ)若農場每年受工廠生產(chǎn)影響的經(jīng)濟損失金額(元),在工廠按照獲得最大利潤的產(chǎn)量進行生產(chǎn)的前提下,農場要在索賠中獲得最大凈收入,應向張林的工廠要求賠付價格是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知某公司生產(chǎn)品牌服裝的年固定成本為10萬元,每生產(chǎn)千件,須另投入2.7萬元,設該公司年內共生產(chǎn)品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知某公司生產(chǎn)品牌服裝的年固定成本為10萬元,每生產(chǎn)千件,須另投入2.7萬元,設該公司年內共生產(chǎn)品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且.
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為10萬元,每生產(chǎn)1千件該產(chǎn)品需另投入2.7萬元,設該公司一年內生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該公司在這一產(chǎn)品的產(chǎn)銷過程中所獲利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com