【題目】在中, 分別是角的對邊,且,若, ,則的面積為( )
A. B. C. D.
【答案】C
【解析】由正弦定理asinA=bsinB=csinC=2R得:
a=2RsinA,b=2RsinB,c=2RsinC,
將上式代入已知得,
即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,
∵A+B+C=π,∴sin(B+C)=sinA,
∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,∵sinA≠0,∴cosB=,
∵B為三角形的內(nèi)角,∴B=;
將, ,B=代入余弦定理b2=a2+c22accosB得:
b2=(a+c)22ac2accosB,即13=162ac(1),
∴ac=3,∴S△ABC=acsinB=.
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點是直線上兩個不同的點,且的內(nèi)切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù).
(1)求解不等式的解集;
(2)若函數(shù)的定義域為R,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某智能手機制作完成之后還需要依次通過三道嚴(yán)格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.
(1)求審核過程中只通過兩道程序的概率;
(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在剛剛結(jié)束的五市聯(lián)考中,某校對甲、乙兩個文科班的數(shù)學(xué)成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,成績統(tǒng)計后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
班級 | 優(yōu)秀 | 非優(yōu)秀 | 合計 |
甲班 | 18 | ||
乙班 | 43 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)請問:是否有的把握認(rèn)為“數(shù)學(xué)成績與所在的班級有關(guān)系”?
(3)用分層抽樣的方法從甲、乙兩個文科班的數(shù)學(xué)成績優(yōu)秀的學(xué)生中抽取5名學(xué)生進行調(diào)研,然后再從這5名學(xué)生中隨機抽取2名學(xué)生進行談話,求抽到的2名學(xué)生中至少有1名乙班學(xué)生的概率.
參考公式: (其中)
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者, , , , , 和4名, , , ,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(Ⅰ)求接受甲種心理暗示的志愿者中包含但不包含的頻率.
(Ⅱ)用表示接受乙種心理暗示的女志愿者人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二年級的一個研究性學(xué)習(xí)小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學(xué)習(xí)小組又分成兩個小組進行驗證性實驗.
(1)第1組做了5次這種植物種子的發(fā)芽實驗(每次均種下一粒種子),求他們的實驗至少有3次成功的概率;
(2)第二小組做了若干次發(fā)芽試驗(每次均種下一粒種子),如果在一次實驗中種子發(fā)芽成功就停止實驗,否則將繼續(xù)進行下次實驗,直到種子發(fā)芽成功為止,但發(fā)芽實驗的次數(shù)最多不超過5次,求第二小組所做種子發(fā)芽實驗的次數(shù)的概率分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)在處取得極值,對任意的恒成立,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“公益行”是由某公益慈善基金發(fā)起并主辦的一款將用戶的運動數(shù)據(jù)轉(zhuǎn)化為公益步數(shù)的捐助公益項目的產(chǎn)品,捐助規(guī)則是滿10000步方可捐助且個人捐出10000步等價于捐出1元,現(xiàn)粗略統(tǒng)計該項目中其中200名的捐助情況表如下:
捐款金額(單位:元) | ||||||
捐款人數(shù) | 4 | 152 | 26 | 10 | 3 | 5 |
(1)將捐款額在200元以上的人稱為“健康大使”,請在現(xiàn)有的“健康大使”中隨機抽取2人,求捐款額在之間人數(shù)的分布列;
(2)為鼓勵更多的人來參加這項活動,該公司決定對捐款額在100元以上的用戶實行紅包獎勵,具體獎勵規(guī)則如下:捐款額在的獎勵紅包5元;捐款額在的獎勵紅包8元;捐款額在的獎勵紅包10元;捐款額大于250的獎勵紅包15元.已知該活動參與人數(shù)有40萬人,將頻率視為概率,試估計該公司要準(zhǔn)備的紅包總金額.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com