數(shù)列中,,,…是首項(xiàng)為1,公比為的等比數(shù)列,則等于(   )

A.    B.   C.    D.

 

【答案】

A

【解析】解:由題意,

由累加法可得

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項(xiàng)an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項(xiàng)為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問(wèn)題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項(xiàng)an;并用解析幾何中的有關(guān)思想方法來(lái)解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學(xué)過(guò)的知識(shí),把問(wèn)題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城一模)若數(shù)列{an}是首項(xiàng)為6-12t,公差為6的等差數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn=3n-t.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{bn}是等比數(shù)列,試證明:對(duì)于任意的n(n∈N,n≥1),均存在正整數(shù)Cn,使得bn+1=a cn,并求數(shù)列{cn}的前n項(xiàng)和Tn
(3)設(shè)數(shù)列{dn}滿足dn=an•bn,且{dn}中不存在這樣的項(xiàng)dt,使得“dk<dk-1與dk<dk+1”同時(shí)成立(其中k≥2,k∈N*),試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”(n∈N*).
(Ⅰ)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列{cn}的首項(xiàng)為2013,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8052,證明{cn}是“三角形”數(shù)列;
(Ⅲ)若g(x)=lgx是(Ⅱ)中數(shù)列{cn}的“保三角形函數(shù)”,問(wèn)數(shù)列{cn}最多有多少項(xiàng)?
(解題中可用以下數(shù)據(jù):lg2≈0.301,lg3≈0.477,lg2013≈3.304)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市通州區(qū)高三4月查漏補(bǔ)缺專項(xiàng)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列單調(diào)遞增,且各項(xiàng)非負(fù),對(duì)于正整數(shù),若任意的,),仍是中的項(xiàng),則稱數(shù)列為“項(xiàng)可減數(shù)列”.

(1)已知數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列是“項(xiàng)可減數(shù)

列”,試確定的最大值;

(2)求證:若數(shù)列是“項(xiàng)可減數(shù)列”,則其前項(xiàng)的和;

(3)已知是各項(xiàng)非負(fù)的遞增數(shù)列,寫(xiě)出(2)的逆命題,判斷該逆命題的真假,

并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)如果有窮數(shù)列a1,a2,a3,…,an(n為正整數(shù))滿足條件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我們稱其為“對(duì)稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列,,…,就是“對(duì)稱數(shù)列”.

(1)設(shè){bn}是項(xiàng)數(shù)為7的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫(xiě)出{bn}的每一項(xiàng).

(2)設(shè){cn}是項(xiàng)數(shù)為2k-1(正整數(shù)k>1)的“對(duì)稱數(shù)列”,其中ck,ck+1,…,c2k-1是首項(xiàng)為50,公差為-4的等差數(shù)列.記{cn}各項(xiàng)的和為S2k-1,當(dāng)k為何值時(shí),S2k-1取得最大值?并求出S2k-1的最大值.

(3)對(duì)于確定的正整數(shù)m>1,寫(xiě)出所有項(xiàng)數(shù)不超過(guò)2m的“對(duì)稱數(shù)列”,使得1,2,22,…,2m-1依次是該數(shù)列中連續(xù)的項(xiàng);當(dāng)m>1 500時(shí),求其中一個(gè)“對(duì)稱數(shù)列”前2 008項(xiàng)的和S2008.

(文)如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對(duì)稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對(duì)稱數(shù)列”.

(1)設(shè){bn}是7項(xiàng)的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫(xiě)出{bn}的每一項(xiàng);

(2)設(shè){cn}是49項(xiàng)的“對(duì)稱數(shù)列”,其中c25,c26,…,c49是首項(xiàng)為1,公比為2的等比數(shù)列,求{cn}各項(xiàng)的和S;

(3)設(shè){dn}是100項(xiàng)的“對(duì)稱數(shù)列”,其中d51,d52,…,d100是首項(xiàng)為2,公差為3的等差數(shù)列,求{dn}前n項(xiàng)的和Sn(n=1,2,…,100).

查看答案和解析>>

同步練習(xí)冊(cè)答案