A. | y=2lgx和y=lgx2 | B. | y=$\frac{|x-1|}{x-1}$和y=$\left\{\begin{array}{l}{-1,x∈(-∞,1)}\\{1,x∈(1,+∞)}\end{array}\right.$ | ||
C. | y=$\frac{{x}^{2}}{x}$和y=x | D. | y=x-3和y=$\sqrt{(x-3)^{2}}$ |
分析 分別判斷兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則是否相同即可.
解答 解:A.y=2lgx的定義域?yàn)椋?,+∞),y=lgx2的定義域?yàn)椋?∞,0)∪(0,+∞),兩個(gè)函數(shù)的定義域不相同,不是相同函數(shù),
B.y=$\frac{|x-1|}{x-1}$=$\left\{\begin{array}{l}{\frac{x-1}{x-1}=1,x>1}\\{\frac{-(x-1)}{x-1}=-1,x<1}\end{array}\right.$,兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則相同,是相同函數(shù),
C.y=$\frac{{x}^{2}}{x}$=x,函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞),兩個(gè)函數(shù)的定義域不相同,不是相同函數(shù),
D.y=$\sqrt{(x-3)^{2}}$=|x-3|,兩個(gè)函數(shù)的對(duì)應(yīng)法則不相同,不是相同函數(shù),
故選:B
點(diǎn)評(píng) 本題主要考查函數(shù)定義的判斷,分別判斷函數(shù)定義域和對(duì)應(yīng)法則是否相同是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M?N | C. | M?N | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | ±$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com