【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(1)寫出第一次服藥后,y與t之間的函數(shù)關系式y(tǒng)=f(t);
(2)據(jù)進一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?
【答案】(1) ; (2)服藥一次后治療有效的時間是5-=小時.
【解析】
(1)由函數(shù)圖象的奧這是一個分段函數(shù),第一段為正比例函數(shù)的一段,第二段是指數(shù)函數(shù)的一段,由于兩端函數(shù)均過點,代入點的坐標,求出參數(shù)的值,即可得到函數(shù)的解析式;
(2)由(1)的結論將函數(shù)值代入函數(shù)的解析式,構造不等式,求出每毫升血液中函數(shù)不少于微克的起始時刻和結束時刻,即可得到結論.
(1)由題意,根據(jù)給定的函數(shù)的圖象,可設函數(shù)的解析式為,
又由函數(shù)的圖象經(jīng)過點,
則當時,,解得,
又由時,,解得,
所以函數(shù)的解析式為.
(2)由題意,令,即當時,,解得,
當時,,解得,
綜上所述,可得實數(shù)的取值范圍是,
所以服藥一次后治療有效的時間是小時.
科目:高中數(shù)學 來源: 題型:
【題目】已知點是平行四邊形所在平面外一點,如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)由題意結合空間向量數(shù)量積的運算法則計算可得,.則,,結合線面垂直的判斷定理可得平面,即是平面的法向量.
(2)利用平面向量的坐標計算可得,,,則,,.
試題解析:
(1)∵,
.
∴,,又,∴平面,
∴是平面的法向量.
(2)∵ ,,
∴,
∴,
故, .
【題型】解答題
【結束】
19
【題目】(1)求圓心在直線上,且與直線相切于點的圓的方程;
(2)求與圓外切于點且半徑為的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了確保神舟飛船發(fā)射時的信息安全,信息須加密傳輸,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的a,b,c,…,z的26個字母(不論大小寫)依次對應1,2,3,…,26這26個自然數(shù)(見下表):
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
通過變換公式:,將明文轉換成密文,如,即h變換成q;,即e變換成c.若按上述規(guī)定,若將明文譯成的密文是shxc,那么原來的明文是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018河南濮陽市高三一模】已知點在拋物線上, 是拋物線上異于的兩點,以為直徑的圓過點.
(I)證明:直線過定點;
(II)過點作直線的垂線,求垂足的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設備上加工,在每臺A、B設備上加工一件甲所需工時分別為1,2,加工一件乙設備所需工時分別為2,1.A、B兩種設備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程是(是參數(shù)),圓的極坐標方程為.
(Ⅰ)求圓心的直角坐標;
(Ⅱ)由直線上的點向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)已知的解集為,求實數(shù)的值;
(2)已知,設、是關于的方程的兩根,且,求實數(shù)的值;
(3)已知滿足,且關于的方程的兩實數(shù)根分別在區(qū)間內,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com