A. | $-\sqrt{2}$或$\sqrt{2}$ | B. | -2或2 | C. | $-2\sqrt{2}$或$2\sqrt{2}$ | D. | -4或4 |
分析 如圖所示,設(shè)直線l的方程為:$y=k(x-\frac{p}{2})$,與拋物線方程聯(lián)立可得${y}^{2}-\frac{2p}{k}y-{p}^{2}$=0,解得yC,由直線l的方程為:$y=k(x-\frac{p}{2})$,可得yA=-pk,yB=-$\frac{pk}{2}$.由于$\overrightarrow{{A}{B}}=2\overrightarrow{{B}C}$,可得yB-yA=2(yC-yB),代入解出即可.
解答 解:如圖所示,
設(shè)直線l的方程為:$y=k(x-\frac{p}{2})$,
聯(lián)立$\left\{\begin{array}{l}{y=k(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$,化為${y}^{2}-\frac{2p}{k}y-{p}^{2}$=0,
解得yC=$\frac{p(1-\sqrt{1+{k}^{2}})}{k}$,
由直線l的方程為:$y=k(x-\frac{p}{2})$,
可得yA=-pk,yB=-$\frac{pk}{2}$.
∵$\overrightarrow{{A}{B}}=2\overrightarrow{{B}C}$,
∴yB-yA=2(yC-yB),
即3yB-yA=2yC,
∴$-\frac{3pk}{2}+pk=\frac{2p(1-\sqrt{1+{k}^{2}})}{k}$,
化為k4-8k2=0,k≠0,
化為k2-8=0,
解得k=$±2\sqrt{2}$.
故選:C.
點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與拋物線相交問(wèn)題、向量的線性運(yùn)算,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆河北武邑中學(xué)高三上周考8.14數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知,,是正數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆河北武邑中學(xué)高三上周考8.14數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知集合,,則等于( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆河北滄州一中高三上第七周周測(cè)數(shù)學(xué)試卷(解析版) 題型:選擇題
(文)若平面向量滿足,則與的夾角是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y2=$\frac{5}{4}$x | B. | y2=$\frac{5}{2}$x | C. | y2=5x | D. | y2=10x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com