【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,
且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)令,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】(1)an=2n-1.(2)Tn=
【解析】(1)依題意,得
解得a2=2.
設(shè)等比數(shù)列{an}的公比為q,由a2=2,可得a1=,a3=2q.
又S3=7,可知+2+2q=7,即2q2-5q+2=0,
解得q=2或.
由題意,得q>1,∴q=2,∴a1=1.
故數(shù)列{an}的通項(xiàng)是an=2n-1.
(2)由于bn=lna3n+1,n=1,2,…,
由(1)得a3n+1=23n,
∴bn=ln 23n=3nln 2,
又bn+1-bn=3ln 2,
∴數(shù)列{bn}是等差數(shù)列.
∴Tn=b1+b2+…+bn==ln 2.
故Tn=ln 2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為正整數(shù),數(shù)列滿足, ,設(shè)數(shù)列滿足
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列是等差數(shù)列,求實(shí)數(shù)的值;
(3)若數(shù)列是等差數(shù)列,前項(xiàng)和為,對(duì)任意的,均存在,使得成立,求滿足條件的所有整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有5張編號(hào)依次為1、2、3、4、5的卡片,這5 張卡片除號(hào)碼外完全相同.現(xiàn)進(jìn)行有放回的連續(xù)抽取2 次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求事件“取出卡片號(hào)碼之和不小于7 或小于5”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時(shí)間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場(chǎng)講座.已知A、B兩學(xué)習(xí)小組各有5位同學(xué),每位同學(xué)在兩場(chǎng)講座任意選聽(tīng)一場(chǎng).若A組1人選聽(tīng)《生活趣味數(shù)學(xué)》,其余4人選聽(tīng)《校園舞蹈賞析》;B組2人選聽(tīng)《生活趣味數(shù)學(xué)》,其余3人選聽(tīng)《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽(tīng)《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設(shè)X為選出的4人中選聽(tīng)《生活趣味數(shù)學(xué)》的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(I)求函數(shù) 在點(diǎn) 處的切線方程;
(II)求函數(shù) 的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn , 且an+12﹣nλ2﹣1=2λSn , λ為正常數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn= ,Cn= + (k,n∈N*,k≥2n+2). 求證:
①bn<bn+1;
②Cn>Cn+1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,AA1⊥底面ABCD,E為B1D的中點(diǎn).
(Ⅰ)證明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D﹣AE﹣C為60°,AA1=AB=1,求三棱錐C﹣AED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 的圓心為 的圓心為N,一動(dòng)圓與圓M內(nèi)切,與圓N外切.
(1)求動(dòng)圓圓心P的軌方跡方程;
(2)設(shè)A,B分別為曲線P與x軸的左右兩個(gè)交點(diǎn),過(guò)點(diǎn) 的直線 與曲線P交于C,D兩點(diǎn),若 ,求直線 的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com