【題目】如圖所示,在空間四邊形ABCD中,點E,H分別是邊ABAD的中點,點F,G分別是邊BC,CD上的點,且,則下列說法正確的是________.(填寫所有正確說法的序號)

EFGH平行; ②EFGH異面;

EFGH的交點M可能在直線AC上,也可能不在直線AC上;

EFGH的交點M一定在直線AC上.

【答案】.

【解析】分析:由題意結合空間幾何體的結構特征和立體幾何公理逐一考查所給命題的真假即可.

詳解:E,H分別是邊AB,AD的中點,則,且,

FG分別是邊BC,CD上的點,且,

,且,

據(jù)此可得四邊形是梯形,且

據(jù)此可知:EFGH不平行;EFGH共面;

直線在平面內,直線在平面內,

則直線EFGH的交點M一定在平面與平面的交線直線AC上.

綜上可得,題中所給的說法正確的是④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點的距離和它到直線的距離的比值為常數(shù),記動點的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相交于不同的兩點, ,直線與曲線相交于不同的兩點 ,且,求以 , , 為頂點的凸四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設△ABC的內角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行六面體中,

求證:(1);

(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線關于軸對稱,頂點在坐標原點,直線經(jīng)過拋物線的焦點.

(1)求拋物線的標準方程;

(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點 ,且滿足,證明直線軸上一定點,并求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在正方體中,上一點,的中點,平面

(Ⅰ)求證:平面

(Ⅱ)求與平面所成的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個數(shù)x.
(1)請寫出程序框圖所表示的函數(shù)表達式;
(2)求輸出的y(y<5)的概率;
(3)求輸出的y(6<y≤8)的概率.

查看答案和解析>>

同步練習冊答案