設(shè)函數(shù)f(x)=lg(x2+ax-a-1),給出下述命題:
①f(x)有最小值②當(dāng)a=0時(shí),f(x)的值域是R
③當(dāng)a>0時(shí),f(x)在[2,+∞)上有反函數(shù)
④若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是a≥-4
其中正確命題的序號是________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:福建省四地六校2011-2012學(xué)年高一第二次月考數(shù)學(xué)試題 題型:044
已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(Ⅰ)函數(shù)f(x)=是否屬于集合M?說明理由;
(Ⅱ)設(shè)函數(shù)f(x)=lg∈M,求a的取值范圍;
(Ⅲ)設(shè)函數(shù)y=2x圖象與函數(shù)y=-x的圖象有交點(diǎn),若函數(shù)f(x)=2x+x2.
證明:函數(shù)f(x)∈M
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京四中2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044
已知:集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=是否屬于集合M?說明理由;
(2)設(shè)函數(shù)f(x)=lg,求實(shí)數(shù)a的取值范圍;
(3)證明:函數(shù)f(x)=2x+x2∈M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修1) 2009-2010學(xué)年 第12期 總168期 人教課標(biāo)高一版 題型:044
設(shè)函數(shù)f(x)=lg(ax2+2x+1).
(1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省六校2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:022
設(shè)函數(shù)f(x)=lg,其中a∈R,m是給定的正整數(shù),且m≥2.如果不等式f(x)>(x-1)lgm在區(qū)間[1,+∞)上有解,則實(shí)數(shù)a的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高三數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044
設(shè)函數(shù)f(x)=lg(ax2+2x+1).
(1)若f(x)的定義域是R,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域是R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com