A. | 20π | B. | 24π | C. | 28π | D. | 32π |
分析 正確作出圖形,利用勾股定理建立方程,求出四面體的外接球的半徑,即可求出四面體的外接球的表面積.
解答 解:如圖所示,∠AFC=120°,∠AFE=60°,AF=$\frac{\sqrt{3}}{2}×2\sqrt{3}$=3,
∴AE=$\frac{3\sqrt{3}}{2}$,EF=$\frac{3}{2}$
設OO′=x,則
∵O′B=2,O′F=1,
∴由勾股定理可得R2=x2+4=($\frac{3}{2}$+1)2+($\frac{3\sqrt{3}}{2}$-x)2,
∴R2=7,
∴四面體的外接球的表面積為4πR2=28π,
故選:C.
點評 本題考查四面體的外接球的表面積,考查學生的計算能力,正確求出四面體的外接球的半徑是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<m<1 | B. | m≥1 | C. | m≤-1或m=0 | D. | m>1或m=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}+\sqrt{6}$ | B. | $\sqrt{2}+\sqrt{3}$ | C. | $\sqrt{3}+\sqrt{5}$ | D. | $\sqrt{5}$+$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1-x}{1+x}$ | B. | $\frac{1+x}{1-x}$ | C. | $\frac{x-1}{x+1}$ | D. | $\frac{2x}{x-1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com