實圓與直線x+y-m=0相切,那么m的值為

[    ]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標平面上的對應點為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(非端點),則Pz在圓C上、寫出線段s的表達式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對應關系,通過這種對應關系的研究,填寫表(表中s1是(1)中圓C1的對應線段).
    線段s與線段s1的關系 m、r的取值或表達式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:mx-y=0,l2:x+my-m-2=0
(1)求證:直線l2恒過定點,并求定點坐標;
(2)求證:對m的任意實數(shù)值,l1和l2的交點M總在一個定圓上;
(3)若l1與定圓的另一個交點為P1,l2與定圓的另一個交點為P2,求當實數(shù)m取值變化時,△MP1P2面積取得最大值時,直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試(上海卷)、數(shù)學 題型:044

已知z是實系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標平面上的對應點為Pz(Rez,Imz).

(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;

(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(非端點),則Pz在圓C上.寫出線段s的表達式,并說明理由;

(3)由(2)知線段s與圓C之間確定了一種對應關系,通過這種對應關系的研究,填寫下表(表中s1是(1)中圓C1的對應線段).

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年福建省福州市高三畢業(yè)班質檢文科數(shù)學試卷(解析版) 題型:選擇題

如圖,直線y=m與拋物線y2=4x交于點A,與圓(x1)2+y2=4的實線部分交于點B,F為拋物線的焦點,則三角形ABF的周長的取值范圍是 ( )

A.(2,4) B.(4,6) C.[2,4] D.[4,6]

 

查看答案和解析>>

同步練習冊答案